These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Altered colorectal afferent function associated with TNBS-induced visceral hypersensitivity in mice. Feng B; La JH; Tanaka T; Schwartz ES; McMurray TP; Gebhart GF Am J Physiol Gastrointest Liver Physiol; 2012 Oct; 303(7):G817-24. PubMed ID: 22859364 [TBL] [Abstract][Full Text] [Related]
9. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization. Kiyatkin ME; Feng B; Schwartz ES; Gebhart GF Am J Physiol Gastrointest Liver Physiol; 2013 Nov; 305(9):G638-48. PubMed ID: 23989007 [TBL] [Abstract][Full Text] [Related]
10. Luminal hypertonicity and acidity modulate colorectal afferents and induce persistent visceral hypersensitivity. La JH; Feng B; Schwartz ES; Brumovsky PR; Gebhart GF Am J Physiol Gastrointest Liver Physiol; 2012 Oct; 303(7):G802-9. PubMed ID: 22859365 [TBL] [Abstract][Full Text] [Related]
11. High-Throughput Functional Characterization of Visceral Afferents by Optical Recordings From Thoracolumbar and Lumbosacral Dorsal Root Ganglia. Bian Z; Guo T; Jiang S; Chen L; Liu J; Zheng G; Feng B Front Neurosci; 2021; 15():657361. PubMed ID: 33776645 [TBL] [Abstract][Full Text] [Related]
12. Altered purinergic signaling in colorectal dorsal root ganglion neurons contributes to colorectal hypersensitivity. Shinoda M; La JH; Bielefeldt K; Gebhart GF J Neurophysiol; 2010 Dec; 104(6):3113-23. PubMed ID: 20861433 [TBL] [Abstract][Full Text] [Related]
13. Experimental and computational evidence for an essential role of NaV1.6 in spike initiation at stretch-sensitive colorectal afferent endings. Feng B; Zhu Y; La JH; Wills ZP; Gebhart GF J Neurophysiol; 2015 Apr; 113(7):2618-34. PubMed ID: 25652923 [TBL] [Abstract][Full Text] [Related]
14. Peripheral and central P2X receptor contributions to colon mechanosensitivity and hypersensitivity in the mouse. Shinoda M; Feng B; Gebhart GF Gastroenterology; 2009 Dec; 137(6):2096-104. PubMed ID: 19549524 [TBL] [Abstract][Full Text] [Related]
15. Unique Molecular Characteristics of Visceral Afferents Arising from Different Levels of the Neuraxis: Location of Afferent Somata Predicts Function and Stimulus Detection Modalities. Meerschaert KA; Adelman PC; Friedman RL; Albers KM; Koerber HR; Davis BM J Neurosci; 2020 Sep; 40(38):7216-7228. PubMed ID: 32817244 [TBL] [Abstract][Full Text] [Related]
16. Load-bearing function of the colorectal submucosa and its relevance to visceral nociception elicited by mechanical stretch. Siri S; Maier F; Santos S; Pierce DM; Feng B Am J Physiol Gastrointest Liver Physiol; 2019 Sep; 317(3):G349-G358. PubMed ID: 31268771 [TBL] [Abstract][Full Text] [Related]
18. Visceral pain from colon and rectum: the mechanotransduction and biomechanics. Feng B; Guo T J Neural Transm (Vienna); 2020 Apr; 127(4):415-429. PubMed ID: 31598778 [TBL] [Abstract][Full Text] [Related]
19. Differences in the expression of transient receptor potential channel V1, transient receptor potential channel A1 and mechanosensitive two pore-domain K+ channels between the lumbar splanchnic and pelvic nerve innervations of mouse urinary bladder and colon. La JH; Schwartz ES; Gebhart GF Neuroscience; 2011 Jul; 186():179-87. PubMed ID: 21549810 [TBL] [Abstract][Full Text] [Related]
20. Differential biomechanical properties of mouse distal colon and rectum innervated by the splanchnic and pelvic afferents. Siri S; Maier F; Chen L; Santos S; Pierce DM; Feng B Am J Physiol Gastrointest Liver Physiol; 2019 Apr; 316(4):G473-G481. PubMed ID: 30702901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]