BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38050918)

  • 1. Two-Factor Fluorogenic Cyanine-Styryl Dyes with Yellow and Red Fluorescence for Bioorthogonal Labelling of DNA.
    Pfeuffer B; Geng P; Wagenknecht HA
    Chembiochem; 2024 Feb; 25(4):e202300739. PubMed ID: 38050918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Factor Fluorogenicity of Tetrazine-Modified Cyanine-Styryl Dyes for Bioorthogonal Labelling of DNA.
    Geng P; List E; Rönicke F; Wagenknecht HA
    Chemistry; 2023 Feb; 29(8):e202203156. PubMed ID: 36367152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes.
    Knorr G; Kozma E; Herner A; Lemke EA; Kele P
    Chemistry; 2016 Jun; 22(26):8972-9. PubMed ID: 27218228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monochromophoric Design Strategy for Tetrazine-Based Colorful Bioorthogonal Probes with a Single Fluorescent Core Skeleton.
    Lee Y; Cho W; Sung J; Kim E; Park SB
    J Am Chem Soc; 2018 Jan; 140(3):974-983. PubMed ID: 29240995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Photon and Multicolor Fluorogenic Bioorthogonal Probes Based on Tetrazine-Conjugated Naphthalene Fluorophores.
    Kim D; Lee JH; Koo JY; Kim HM; Park SB
    Bioconjug Chem; 2020 May; 31(5):1545-1550. PubMed ID: 32297734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Efficiency of Metabolic Labeling of DNA by Diels-Alder Reactions with Inverse Electron Demand: Correlation with the Size of Modified 2'-Deoxyuridines.
    Ganz D; Geng P; Wagenknecht HA
    ACS Chem Biol; 2023 May; 18(5):1054-1059. PubMed ID: 36921617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclopropenes as Chemical Reporters for Dual Bioorthogonal and Orthogonal Metabolic Labeling of DNA.
    Seul N; Lamade D; Stoychev P; Mijic M; Michenfelder RT; Rieger L; Geng P; Wagenknecht HA
    Angew Chem Int Ed Engl; 2024 May; 63(22):e202403044. PubMed ID: 38517205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioorthogonal Fluorescence Turn-On Labeling Based on Bicyclononyne-Tetrazine Cycloaddition Reactions that Form Pyridazine Products.
    Siegl SJ; Galeta J; Dzijak R; Dračínský M; Vrabel M
    Chempluschem; 2019 May; 84(5):493-497. PubMed ID: 31245251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Kinetic and Fluorogenic Enhancement Strategy for Labeling of Nucleic Acids.
    Loehr MO; Luedtke NW
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202112931. PubMed ID: 35139255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming Spectral Dependence: A General Strategy for Developing Far-Red and Near-Infrared Ultra-Fluorogenic Tetrazine Bioorthogonal Probes.
    Mao W; Chi W; He X; Wang C; Wang X; Yang H; Liu X; Wu H
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202117386. PubMed ID: 35167188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioorthogonal labeling with tetrazine-dyes for super-resolution microscopy.
    Beliu G; Kurz AJ; Kuhlemann AC; Behringer-Pliess L; Meub M; Wolf N; Seibel J; Shi ZD; Schnermann M; Grimm JB; Lavis LD; Doose S; Sauer M
    Commun Biol; 2019; 2():261. PubMed ID: 31341960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse Electron-Demand Diels-Alder Bioorthogonal Reactions.
    Wu H; Devaraj NK
    Top Curr Chem (Cham); 2016 Feb; 374(1):3. PubMed ID: 27572986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Extended Approach for the Development of Fluorogenic trans-Cyclooctene-Tetrazine Cycloadditions.
    Siegl SJ; Galeta J; Dzijak R; Vázquez A; Del Río-Villanueva M; Dračínský M; Vrabel M
    Chembiochem; 2019 Apr; 20(7):886-890. PubMed ID: 30561884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Systematic Study of Coumarin-Tetrazine Light-Up Probes for Bioorthogonal Fluorescence Imaging.
    Galeta J; Dzijak R; Obořil J; Dračínský M; Vrabel M
    Chemistry; 2020 Aug; 26(44):9945-9953. PubMed ID: 32339341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Tetrazine-Caged Carbon-Dipyrromethene as a Bioorthogonally Activatable Fluorescent Probe.
    Tam LKB; Lo PC; Cheung PCK; Ng DKP
    Chem Asian J; 2023 Sep; 18(17):e202300562. PubMed ID: 37489571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Live-Cell Imaging of Sterculic Acid-a Naturally Occurring 1,2-Cyclopropene Fatty Acid-by Bioorthogonal Reaction with Turn-On Tetrazine-Fluorophore Conjugates.
    Bertheussen K; van de Plassche M; Bakkum T; Gagestein B; Ttofi I; Sarris AJC; Overkleeft HS; van der Stelt M; van Kasteren SI
    Angew Chem Int Ed Engl; 2022 Sep; 61(38):e202207640. PubMed ID: 35838324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximity-Induced Bioorthogonal Chemistry Using Inverse Electron Demand Diels-Alder Reaction.
    Möhler JS; Werther P; Wombacher R
    Methods Mol Biol; 2019; 2008():147-163. PubMed ID: 31124095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioorthogonal Ligation-Activated Fluorogenic FRET Dyads.
    Albitz E; Kern D; Kormos A; Bojtár M; Török G; Biró A; Szatmári Á; Németh K; Kele P
    Angew Chem Int Ed Engl; 2022 Feb; 61(6):e202111855. PubMed ID: 34861094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-orthogonally activated tetraphenylene-tetrazine aggregation-induced emission fluorogenic probes.
    Teng Y; Zhang R; Yang B; Yang H; Li X; Yin D; Feng X; Tian Y
    J Mater Chem B; 2022 Nov; 10(42):8642-8649. PubMed ID: 36254898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetrazine-Isonitrile Bioorthogonal Fluorogenic Reactions Enable Multiplex Labeling and Wash-Free Bioimaging of Live Cells.
    Deng Y; Shen T; Yu X; Li J; Zou P; Gong Q; Zheng Y; Sun H; Liu X; Wu H
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202319853. PubMed ID: 38242857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.