These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38051099)

  • 1. Coupled cluster cavity Born-Oppenheimer approximation for electronic strong coupling.
    Angelico S; Haugland TS; Ronca E; Koch H
    J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38051099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonadiabatic Wave Packet Dynamics with Ab Initio Cavity-Born-Oppenheimer Potential Energy Surfaces.
    Schnappinger T; Kowalewski M
    J Chem Theory Comput; 2023 Jan; 19(2):460-71. PubMed ID: 36625723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond Cavity Born-Oppenheimer: On Nonadiabatic Coupling and Effective Ground State Hamiltonians in Vibro-Polaritonic Chemistry.
    Fischer EW; Saalfrank P
    J Chem Theory Comput; 2023 Oct; 19(20):7215-7229. PubMed ID: 37793029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cavity Born-Oppenheimer Hartree-Fock Ansatz: Light-Matter Properties of Strongly Coupled Molecular Ensembles.
    Schnappinger T; Sidler D; Ruggenthaler M; Rubio A; Kowalewski M
    J Phys Chem Lett; 2023 Sep; 14(36):8024-8033. PubMed ID: 37651603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ab Initio Linear-Response Approach to Vibro-Polaritons in the Cavity Born-Oppenheimer Approximation.
    Bonini J; Flick J
    J Chem Theory Comput; 2022 May; 18(5):2764-2773. PubMed ID: 35404591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction Theory.
    Vu N; Mejia-Rodriguez D; Bauman NP; Panyala A; Mutlu E; Govind N; Foley JJ
    J Chem Theory Comput; 2024 Feb; 20(3):1214-1227. PubMed ID: 38291561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polaritonic effects in the vibronic spectrum of molecules in an optical cavity.
    Vidal ML; Manby FR; Knowles PJ
    J Chem Phys; 2022 May; 156(20):204119. PubMed ID: 35649846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagonalizing the Born-Oppenheimer Hamiltonian via Moyal perturbation theory, nonadiabatic corrections, and translational degrees of freedom.
    Littlejohn R; Rawlinson J; Subotnik J
    J Chem Phys; 2024 Mar; 160(11):. PubMed ID: 38501907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity Born-Oppenheimer approximation for molecules and materials via electric field response.
    Bonini J; Ahmadabadi I; Flick J
    J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39404219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The exact molecular wavefunction as a product of an electronic and a nuclear wavefunction.
    Cederbaum LS
    J Chem Phys; 2013 Jun; 138(22):224110. PubMed ID: 23781786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity Born-Oppenheimer Approximation for Correlated Electron-Nuclear-Photon Systems.
    Flick J; Appel H; Ruggenthaler M; Rubio A
    J Chem Theory Comput; 2017 Apr; 13(4):1616-1625. PubMed ID: 28277664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Born-Oppenheimer Dynamics, Electronic Friction, and the Inclusion of Electron-Electron Interactions.
    Dou W; Miao G; Subotnik JE
    Phys Rev Lett; 2017 Jul; 119(4):046001. PubMed ID: 29341745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled Electron-Nuclear Dynamics on H
    Dey D; Tiwari AK
    J Phys Chem A; 2016 Oct; 120(42):8259-8266. PubMed ID: 27690436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Quantum Dynamics: A Quantum Computing Perspective.
    Ollitrault PJ; Miessen A; Tavernelli I
    Acc Chem Res; 2021 Dec; 54(23):4229-4238. PubMed ID: 34787398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalization of classical mechanics for nuclear motions on nonadiabatically coupled potential energy surfaces in chemical reactions.
    Takatsuka K
    J Phys Chem A; 2007 Oct; 111(41):10196-204. PubMed ID: 17676718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular spectroscopy beyond the born-oppenheimer approximation: a computational study of the CF(3)O and CF(3)S radicals.
    Marenich AV; Boggs JE
    J Phys Chem A; 2007 Nov; 111(44):11214-20. PubMed ID: 17469808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab Initio Vibro-Polaritonic Spectra in Strongly Coupled Cavity-Molecule Systems.
    Schnappinger T; Kowalewski M
    J Chem Theory Comput; 2023 Dec; 19(24):9278-9289. PubMed ID: 38084914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single surface beyond Born-Oppenheimer equation for a three-state model Hamiltonian of Na3 cluster.
    Kumar Paul A; Sardar S; Sarkar B; Adhikari S
    J Chem Phys; 2009 Sep; 131(12):124312. PubMed ID: 19791886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the cavity Born-Oppenheimer approximation.
    Fiechter MR; Richardson JO
    J Chem Phys; 2024 May; 160(18):. PubMed ID: 38717280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle.
    Albert J; Hader K; Engel V
    J Chem Phys; 2017 Dec; 147(24):241101. PubMed ID: 29289118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.