These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 38051115)
1. Organic electrodes based on redox-active covalent organic frameworks for lithium batteries. Dantas R; Ribeiro C; Souto M Chem Commun (Camb); 2023 Dec; 60(2):138-149. PubMed ID: 38051115 [TBL] [Abstract][Full Text] [Related]
2. Covalent Organic Frameworks as Electrode Materials for Metal Ion Batteries: A Current Review. Wang Z; Jin W; Huang X; Lu G; Li Y Chem Rec; 2020 Oct; 20(10):1198-1219. PubMed ID: 32881320 [TBL] [Abstract][Full Text] [Related]
3. Recent Progress in Design Principles of Covalent Organic Frameworks for Rechargeable Metal-Ion Batteries. Zhang L; Zhang X; Han D; Zhai L; Mi L Small Methods; 2023 Nov; 7(11):e2300687. PubMed ID: 37568245 [TBL] [Abstract][Full Text] [Related]
4. A Review on Covalent Organic Frameworks as Artificial Interface Layers for Li and Zn Metal Anodes in Rechargeable Batteries. Zhao Y; Feng K; Yu Y Adv Sci (Weinh); 2024 Feb; 11(7):e2308087. PubMed ID: 38063856 [TBL] [Abstract][Full Text] [Related]
5. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. Sun B; Sun Z; Yang Y; Huang XL; Jun SC; Zhao C; Xue J; Liu S; Liu HK; Dou SX ACS Nano; 2024 Jan; 18(1):28-66. PubMed ID: 38117556 [TBL] [Abstract][Full Text] [Related]
6. Covalent organic frameworks and their composites for rechargeable batteries. Xu Y; Gong J; Li Q; Guo X; Wan X; Xu L; Pang H Nanoscale; 2024 Jun; 16(24):11429-11456. PubMed ID: 38855977 [TBL] [Abstract][Full Text] [Related]
7. Covalent Organic Framework-based Solid-State Electrolytes, Electrode Materials, and Separators for Lithium-ion Batteries. Zhu Y; Bai Q; Ouyang S; Jin Y; Zhang W ChemSusChem; 2024 Jan; 17(1):e202301118. PubMed ID: 37706226 [TBL] [Abstract][Full Text] [Related]
8. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries. Shehab MK; Weeraratne KS; Huang T; Lao KU; El-Kaderi HM ACS Appl Mater Interfaces; 2021 Apr; 13(13):15083-15091. PubMed ID: 33749255 [TBL] [Abstract][Full Text] [Related]
10. The research progress on COF solid-state electrolytes for lithium batteries. Wang Y; Hao Q; Lv Q; Shang X; Wu M; Li Z Chem Commun (Camb); 2024 Sep; 60(74):10046-10063. PubMed ID: 39171458 [TBL] [Abstract][Full Text] [Related]
11. Covalent Organic Frameworks for Separator Modification of Lithium-Sulfur Batteries. Wang Y; Yang X; Li P; Cui F; Wang R; Li X Macromol Rapid Commun; 2023 Jun; 44(11):e2200760. PubMed ID: 36385727 [TBL] [Abstract][Full Text] [Related]
12. Covalent Organic Frameworks as Electrode Materials for Alkali Metal-ion Batteries. Cui S; Miao W; Peng H; Ma G; Lei Z; Zhu L; Xu Y Chemistry; 2024 Feb; 30(12):e202303320. PubMed ID: 38126628 [TBL] [Abstract][Full Text] [Related]
13. High-Performance Polyimide Covalent Organic Frameworks for Lithium-Ion Batteries: Exceptional Stability and Capacity Retention at High Current Densities. Li J; Zhang J; Hou Y; Suo J; Liu J; Li H; Qiu S; Valtchev V; Fang Q; Liu X Angew Chem Int Ed Engl; 2024 Dec; 63(52):e202412452. PubMed ID: 39343741 [TBL] [Abstract][Full Text] [Related]
14. Recent Progress in Polymeric Carbonyl-Based Electrode Materials for Lithium and Sodium Ion Batteries. Amin K; Mao L; Wei Z Macromol Rapid Commun; 2019 Jan; 40(1):e1800565. PubMed ID: 30411834 [TBL] [Abstract][Full Text] [Related]
15. Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Wang Z; Li Y; Liu P; Qi Q; Zhang F; Lu G; Zhao X; Huang X Nanoscale; 2019 Mar; 11(12):5330-5335. PubMed ID: 30843565 [TBL] [Abstract][Full Text] [Related]
16. Structure-Performance Relationships of Covalent Organic Framework Electrode Materials in Metal-Ion Batteries. Lu Y; Cai Y; Zhang Q; Chen J J Phys Chem Lett; 2021 Aug; 12(33):8061-8071. PubMed ID: 34406012 [TBL] [Abstract][Full Text] [Related]
17. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity. Yang X; Hu Y; Dunlap N; Wang X; Huang S; Su Z; Sharma S; Jin Y; Huang F; Wang X; Lee SH; Zhang W Angew Chem Int Ed Engl; 2020 Nov; 59(46):20385-20389. PubMed ID: 32722860 [TBL] [Abstract][Full Text] [Related]
18. Molecular Engineering of Covalent Organic Framework Cathodes for Enhanced Zinc-Ion Batteries. Wang W; Kale VS; Cao Z; Lei Y; Kandambeth S; Zou G; Zhu Y; Abouhamad E; Shekhah O; Cavallo L; Eddaoudi M; Alshareef HN Adv Mater; 2021 Oct; 33(39):e2103617. PubMed ID: 34365688 [TBL] [Abstract][Full Text] [Related]
19. A Solvent-Free Covalent Organic Framework Single-Ion Conductor Based on Ion-Dipole Interaction for All-Solid-State Lithium Organic Batteries. Li Z; Oh KS; Seo JM; Qin W; Lee S; Zhai L; Li C; Baek JB; Lee SY Nanomicro Lett; 2024 Aug; 16(1):265. PubMed ID: 39120836 [TBL] [Abstract][Full Text] [Related]
20. Distributed Li-Ion Flux Enabled by Sulfonated Covalent Organic Frameworks for High-Performance Lithium Metal Anodes. Han D; Yang X; Li K; Sun L; Hou T; Zhang L; Sun Y; Zhai L; Mi L Macromol Rapid Commun; 2023 Apr; 44(7):e2200803. PubMed ID: 36519731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]