These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 38051256)
21. Metabolomic Profiling of the Host Response of Tomato ( Zeiss DR; Mhlongo MI; Tugizimana F; Steenkamp PA; Dubery IA Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31416118 [TBL] [Abstract][Full Text] [Related]
22. Whole Root Transcriptomic Analysis Suggests a Role for Auxin Pathways in Resistance to Ralstonia solanacearum in Tomato. French E; Kim BS; Rivera-Zuluaga K; Iyer-Pascuzzi AS Mol Plant Microbe Interact; 2018 Apr; 31(4):432-444. PubMed ID: 29153016 [TBL] [Abstract][Full Text] [Related]
23. Rhizophagus irregularis MUCL 41833 transitorily reduces tomato bacterial wilt incidence caused by Ralstonia solanacearum under in vitro conditions. Chave M; Crozilhac P; Deberdt P; Plouznikoff K; Declerck S Mycorrhiza; 2017 Oct; 27(7):719-723. PubMed ID: 28585092 [TBL] [Abstract][Full Text] [Related]
24. Hydroxycinnamic Acid Degradation, a Broadly Conserved Trait, Protects Ralstonia solanacearum from Chemical Plant Defenses and Contributes to Root Colonization and Virulence. Lowe TM; Ailloud F; Allen C Mol Plant Microbe Interact; 2015 Mar; 28(3):286-97. PubMed ID: 25423265 [TBL] [Abstract][Full Text] [Related]
26. Induced ligno-suberin vascular coating and tyramine-derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato. Kashyap A; Jiménez-Jiménez ÁL; Zhang W; Capellades M; Srinivasan S; Laromaine A; Serra O; Figueras M; Rencoret J; Gutiérrez A; Valls M; Coll NS New Phytol; 2022 May; 234(4):1411-1429. PubMed ID: 35152435 [TBL] [Abstract][Full Text] [Related]
27. Cell Density-Regulated Adhesins Contribute to Early Disease Development and Adhesion in Ralstonia solanacearum. Carter MD; Khokhani D; Allen C Appl Environ Microbiol; 2023 Feb; 89(2):e0156522. PubMed ID: 36688670 [TBL] [Abstract][Full Text] [Related]
29. The tomato P69 subtilase family is involved in resistance to bacterial wilt. Zhang W; Planas-Marquès M; Mazier M; Šimkovicová M; Rocafort M; Mantz M; Huesgen PF; Takken FLW; Stintzi A; Schaller A; Coll NS; Valls M Plant J; 2024 Apr; 118(2):388-404. PubMed ID: 38150324 [TBL] [Abstract][Full Text] [Related]
30. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. Yao J; Allen C J Bacteriol; 2006 May; 188(10):3697-708. PubMed ID: 16672623 [TBL] [Abstract][Full Text] [Related]
31. Protease Activities Triggered by Planas-Marquès M; Bernardo-Faura M; Paulus J; Kaschani F; Kaiser M; Valls M; van der Hoorn RAL; Coll NS Mol Cell Proteomics; 2018 Jun; 17(6):1112-1125. PubMed ID: 29523767 [TBL] [Abstract][Full Text] [Related]
32. Transcriptome analysis reveals differential transcription in tomato (Solanum lycopersicum) following inoculation with Ralstonia solanacearum. Chen N; Shao Q; Lu Q; Li X; Gao Y Sci Rep; 2022 Dec; 12(1):22137. PubMed ID: 36550145 [TBL] [Abstract][Full Text] [Related]
34. Biological Potential of Bioorganic Fertilizer Fortified with Bacterial Antagonist for the Control of Tomato Bacterial Wilt and the Promotion of Crop Yields. Wu K; Fang Z; Wang L; Yuan S; Guo R; Shen B; Shen Q J Microbiol Biotechnol; 2016 Oct; 26(10):1755-1764. PubMed ID: 27381335 [TBL] [Abstract][Full Text] [Related]
35. Colonization of Pythium oligandrum in the tomato rhizosphere for biological control of bacterial wilt disease analyzed by real-time PCR and confocal laser-scanning microscopy. Takenaka S; Sekiguchi H; Nakaho K; Tojo M; Masunaka A; Takahashi H Phytopathology; 2008 Feb; 98(2):187-95. PubMed ID: 18943195 [TBL] [Abstract][Full Text] [Related]
36. Tomato Root Transformation Followed by Inoculation with Ralstonia Solanacearum for Straightforward Genetic Analysis of Bacterial Wilt Disease. Morcillo RJL; Zhao A; Tamayo-Navarrete MI; García-Garrido JM; Macho AP J Vis Exp; 2020 Mar; (157):. PubMed ID: 32225152 [TBL] [Abstract][Full Text] [Related]
37. An avirulent Ralstonia solanacearum strain FJAT1458 outcompetes with virulent strain and induces tomato plant resistance against bacterial wilt. Zheng X; Xiao R; Chen M; Wu H; Gao X; Wang J Pest Manag Sci; 2022 Nov; 78(11):5002-5013. PubMed ID: 36053816 [TBL] [Abstract][Full Text] [Related]
38. Integrative transcriptomic analysis unveils lncRNA-miRNA-mRNA interplay in tomato plants responding to Ralstonia solanacearum. Si X; Liu H; Cheng X; Xu C; Han Z; Dai Z; Wang R; Pan C; Lu G Int J Biol Macromol; 2023 Dec; 253(Pt 3):126891. PubMed ID: 37709224 [TBL] [Abstract][Full Text] [Related]
39. Endophytes from Gnetum gnemon L. can protect seedlings against the infection of phytopathogenic bacterium Ralstonia solanacearum as well as promote plant growth in tomato. Agarwal H; Dowarah B; Baruah PM; Bordoloi KS; Krishnatreya DB; Agarwala N Microbiol Res; 2020 Sep; 238():126503. PubMed ID: 32497966 [TBL] [Abstract][Full Text] [Related]
40. Root Metabolism and Effects of Root Exudates on the Growth of Li Z; Guo W; Mo C; Tang R; He L; Du L; Li M; Wu H; Tang X; Huang Z; Wu X Genes (Basel); 2023 Feb; 14(2):. PubMed ID: 36833455 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]