These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38051278)

  • 1. Contact Time of Droplet Impact on Superhydrophobic Cylindrical Surfaces with a Ridge.
    Chen X; Wang YF; Yang YR; Wang XD; Lee DJ
    Langmuir; 2023 Dec; 39(50):18644-18653. PubMed ID: 38051278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axial spreading of droplet impact on ridged superhydrophobic surfaces.
    Hu Z; Zhang X; Gao S; Yuan Z; Lin Y; Chu F; Wu X
    J Colloid Interface Sci; 2021 Oct; 599():130-139. PubMed ID: 33933788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact Dynamics of a Droplet on Superhydrophobic Cylinders Structured with a Macro Ridge.
    Zhang LZ; Chen X; Yang YR; Wang XD
    Langmuir; 2023 May; 39(18):6375-6386. PubMed ID: 37092810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards the shortest possible contact time: Droplet impact on cylindrical superhydrophobic surfaces structured with macro-scale features.
    Abolghasemibizaki M; McMasters RL; Mohammadi R
    J Colloid Interface Sci; 2018 Jul; 521():17-23. PubMed ID: 29547785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
    Abolghasemibizaki M; Mohammadi R
    J Colloid Interface Sci; 2018 Jan; 509():422-431. PubMed ID: 28923739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Investigation of Water Droplet Impact on the Electrospun Superhydrophobic Cylindrical Glass: Contact Time, Maximum Spreading Factor, and Splash Threshold.
    Khanzadeh Borjak S; Rafee R; Valipour MS
    Langmuir; 2020 Nov; 36(45):13498-13508. PubMed ID: 33146013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Asymmetry on the Contact Time of Droplet Impact on Superhydrophobic Cylindrical Surfaces.
    Chen X; Zhang LZ; Wang YF; Jin JX; Wang YB; Yang YR; Gao SR; Zheng SF; Wang XD; Lee DJ
    Langmuir; 2023 Dec; 39(51):19037-19047. PubMed ID: 38096493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact Time of Droplet Impact on Inclined Ridged Superhydrophobic Surfaces.
    Hu Z; Chu F; Lin Y; Wu X
    Langmuir; 2022 Feb; 38(4):1540-1549. PubMed ID: 35072484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet impact on cylindrical surfaces: Effects of surface wettability, initial impact velocity, and cylinder size.
    Wang Y; Wang Y; Wang S
    J Colloid Interface Sci; 2020 Oct; 578():207-217. PubMed ID: 32531551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Acoustic Waves to Control Droplet Impact onto Superhydrophobic and Slippery Liquid-Infused Porous Surfaces.
    Biroun MH; Haworth L; Agrawal P; Orme B; McHale G; Torun H; Rahmati M; Fu Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46076-46087. PubMed ID: 34520158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact time of impacting droplets on a superhydrophobic surface with tunable curvature and groove orientation.
    Guo C; Liu L; Liu C
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34814124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet Impact on Anisotropic Superhydrophobic Surfaces.
    Guo C; Zhao D; Sun Y; Wang M; Liu Y
    Langmuir; 2018 Mar; 34(11):3533-3540. PubMed ID: 29436832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contact Time of a Droplet Off-Centered Impacting a Superhydrophobic Cylinder.
    Zhang LZ; Chen X; Wang YF; Yang YR; Zheng SF; Lee DJ; Wang XD
    Langmuir; 2023 Nov; 39(45):16023-16034. PubMed ID: 37916520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jet or wet? Droplet post-impact regimes on concave contours.
    Agrawal S; Khurana G; Samanta D; Dhar P
    Eur Phys J E Soft Matter; 2023 Oct; 46(10):90. PubMed ID: 37782381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rebounding suppression of droplet impact on hot surfaces: effect of surface temperature and concaveness.
    Jowkar S; Morad MR
    Soft Matter; 2019 Jan; 15(5):1017-1026. PubMed ID: 30657147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compound Droplet Impact on a Thin Hydrophobic Cylinder.
    Yin S; Huang Y; Li H; Fok PJY; Peng H; Wong TN
    Langmuir; 2023 Oct; 39(41):14758-14763. PubMed ID: 37798256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water droplet impact on elastic superhydrophobic surfaces.
    Weisensee PB; Tian J; Miljkovic N; King WP
    Sci Rep; 2016 Jul; 6():30328. PubMed ID: 27461899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Surface Wetting and Heat Transfer in a Droplet-Particle System of Less Than Unity Size Ratio.
    Mitra S; Evans G
    Front Chem; 2018; 6():259. PubMed ID: 30013967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.