BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38051297)

  • 1. First-Principles Investigation of Near-Surface Divacancies in Silicon Carbide.
    Zhu Y; Yu VW; Galli G
    Nano Lett; 2023 Dec; 23(24):11453-11460. PubMed ID: 38051297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin Polarization, Electron-Phonon Coupling, and Zero-Phonon Line of the NV Center in 3
    Jurgen von Bardeleben H; Cantin JL; Gerstmann U; Schmidt WG; Biktagirov T
    Nano Lett; 2021 Oct; 21(19):8119-8125. PubMed ID: 34581585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-optical coherent population trapping with defect spin ensembles in silicon carbide.
    Zwier OV; O'Shea D; Onur AR; van der Wal CH
    Sci Rep; 2015 Jun; 5():10931. PubMed ID: 26047132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and molecular pathways to the formation of spin defects in silicon carbide.
    Lee EMY; Yu A; de Pablo JJ; Galli G
    Nat Commun; 2021 Nov; 12(1):6325. PubMed ID: 34732705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent Control and Magnetic Detection of Divacancy Spins in Silicon Carbide at High Pressures.
    Liu L; Wang JF; Liu XD; Xu HA; Cui JM; Li Q; Zhou JY; Lin WX; He ZX; Xu W; Wei Y; Liu ZH; Wang P; Hao ZH; Ding JF; Li HO; Liu W; Li H; You L; Xu JS; Gregoryanz E; Li CF; Guo GC
    Nano Lett; 2022 Dec; 22(24):9943-9950. PubMed ID: 36507869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong Zero-Phonon Transition from Point Defect-Stacking Fault Complexes in Silicon Carbide Nanowires.
    Lee JH; Jeon WB; Moon JS; Lee J; Han SW; Bodrog Z; Gali A; Lee SY; Kim JH
    Nano Lett; 2021 Nov; 21(21):9187-9194. PubMed ID: 34677068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Room temperature coherent control of defect spin qubits in silicon carbide.
    Koehl WF; Buckley BB; Heremans FJ; Calusine G; Awschalom DD
    Nature; 2011 Nov; 479(7371):84-7. PubMed ID: 22051676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab Initio Investigation of the Hydrogen Interaction on Two Dimensional Silicon Carbide.
    Nguyen PM; Van Nguyen H; Lam VT; Nhu Duong TT; Chong TV; Tran HTT
    ACS Omega; 2022 Dec; 7(51):47642-47649. PubMed ID: 36591197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the formation of spin-defects from first principles.
    Zhang C; Gygi F; Galli G
    Nat Commun; 2023 Sep; 14(1):5985. PubMed ID: 37752139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-Principles Predictions of Out-of-Plane Group IV and V Dimers as High-Symmetry, High-Spin Defects in Hexagonal Boron Nitride.
    Bhang J; Ma H; Yim D; Galli G; Seo H
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45768-45777. PubMed ID: 34541839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon p electron ferromagnetism in silicon carbide.
    Wang Y; Liu Y; Wang G; Anwand W; Jenkins CA; Arenholz E; Munnik F; Gordan OD; Salvan G; Zahn DR; Chen X; Gemming S; Helm M; Zhou S
    Sci Rep; 2015 Mar; 5():8999. PubMed ID: 25758040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum systems in silicon carbide for sensing applications.
    Castelletto S; Lew CT; Lin WX; Xu JS
    Rep Prog Phys; 2023 Dec; 87(1):. PubMed ID: 38029424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths.
    Lee Y; Hu Y; Lang X; Kim D; Li K; Ping Y; Fu KC; Cho K
    Nat Commun; 2022 Dec; 13(1):7501. PubMed ID: 36473851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic-field-dependent spin properties of divacancy defects in silicon carbide.
    Yan FF; Wang JF; He ZX; Li Q; Lin WX; Zhou JY; Xu JS; Li CF; Guo GC
    Nanoscale; 2023 Mar; 15(11):5300-5304. PubMed ID: 36810581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Paramagnetic Defects in the Synthesis of Silicon Carbide.
    Mukesh N; Márkus BG; Jegenyes N; Bortel G; Bezerra SM; Simon F; Beke D; Gali A
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Annealing-Induced Changes in the Nature of Point Defects in Sublimation-Grown Cubic Silicon Carbide.
    Schöler M; Brecht C; Wellmann PJ
    Materials (Basel); 2019 Aug; 12(15):. PubMed ID: 31390722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-photon entanglement interfaces in silicon carbide defect centers.
    Economou SE; Dev P
    Nanotechnology; 2016 Dec; 27(50):504001. PubMed ID: 27861163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purcell Enhancement of a Single Silicon Carbide Color Center with Coherent Spin Control.
    Crook AL; Anderson CP; Miao KC; Bourassa A; Lee H; Bayliss SL; Bracher DO; Zhang X; Abe H; Ohshima T; Hu EL; Awschalom DD
    Nano Lett; 2020 May; 20(5):3427-3434. PubMed ID: 32208710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting.
    Jian JX; Jokubavicius V; Syväjärvi M; Yakimova R; Sun J
    ACS Nano; 2021 Mar; 15(3):5502-5512. PubMed ID: 33605135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrometry by optical charge conversion of deep defects in 4H-SiC.
    Wolfowicz G; Whiteley SJ; Awschalom DD
    Proc Natl Acad Sci U S A; 2018 Jul; 115(31):7879-7883. PubMed ID: 30012622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.