These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38051617)

  • 1. Prediction of Drug-Disease Associations Based on Multi-Kernel Deep Learning Method in Heterogeneous Graph Embedding.
    Li D; Xiao Z; Sun H; Jiang X; Zhao W; Shen X
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(1):120-128. PubMed ID: 38051617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. REDDA: Integrating multiple biological relations to heterogeneous graph neural network for drug-disease association prediction.
    Gu Y; Zheng S; Yin Q; Jiang R; Li J
    Comput Biol Med; 2022 Nov; 150():106127. PubMed ID: 36182762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-task prediction-based graph contrastive learning for inferring the relationship among lncRNAs, miRNAs and diseases.
    Sheng N; Wang Y; Huang L; Gao L; Cao Y; Xie X; Fu Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37529914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusing graph transformer with multi-aggregate GCN for enhanced drug-disease associations prediction.
    He S; Yun L; Yi H
    BMC Bioinformatics; 2024 Feb; 25(1):79. PubMed ID: 38378479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An effective multi-task learning framework for drug repurposing based on graph representation learning.
    Ye S; Zhao W; Shen X; Jiang X; He T
    Methods; 2023 Oct; 218():48-56. PubMed ID: 37516260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MHADTI: predicting drug-target interactions via multiview heterogeneous information network embedding with hierarchical attention mechanisms.
    Tian Z; Peng X; Fang H; Zhang W; Dai Q; Ye Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36242566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partner-Specific Drug Repositioning Approach Based on Graph Convolutional Network.
    Sun X; Wang B; Zhang J; Li M
    IEEE J Biomed Health Inform; 2022 Nov; 26(11):5757-5765. PubMed ID: 35921345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous multi-scale neighbor topologies enhanced drug-disease association prediction.
    Xuan P; Meng X; Gao L; Zhang T; Nakaguchi T
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35393616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug repositioning via Multi-view Representation Learning with Heterogeneous Graph Neural Network.
    Peng L; Yang C; Yang J; Tu Y; Yu Q; Li Z; Chen M; Liang W
    IEEE J Biomed Health Inform; 2024 Jul; PP():. PubMed ID: 39074005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network.
    Yang R; Fu Y; Zhang Q; Zhang L
    Artif Intell Med; 2024 Apr; 150():102805. PubMed ID: 38553169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug repositioning based on the heterogeneous information fusion graph convolutional network.
    Cai L; Lu C; Xu J; Meng Y; Wang P; Fu X; Zeng X; Su Y
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34378011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ALDPI: adaptively learning importance of multi-scale topologies and multi-modality similarities for drug-protein interaction prediction.
    Hu K; Cui H; Zhang T; Sun C; Xuan P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35108362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks.
    Zhao BW; Hu L; You ZH; Wang L; Su XR
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning Multi-Scale Heterogeneous Representations and Global Topology for Drug-Target Interaction Prediction.
    Xuan P; Hu K; Cui H; Zhang T; Nakaguchi T
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1891-1902. PubMed ID: 34673498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction.
    Zhao C; Qiu Y; Zhou S; Liu S; Zhang W; Niu Y
    BMC Genomics; 2020 Dec; 21(Suppl 13):867. PubMed ID: 33334307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of drug-disease associations by integrating common topologies of heterogeneous networks and specific topologies of subnets.
    Gao L; Cui H; Zhang T; Sheng N; Xuan P
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34850815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepMPF: deep learning framework for predicting drug-target interactions based on multi-modal representation with meta-path semantic analysis.
    Ren ZH; You ZH; Zou Q; Yu CQ; Ma YF; Guan YJ; You HR; Wang XF; Pan J
    J Transl Med; 2023 Jan; 21(1):48. PubMed ID: 36698208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug repositioning based on heterogeneous networks and variational graph autoencoders.
    Lei S; Lei X; Liu L
    Front Pharmacol; 2022; 13():1056605. PubMed ID: 36618933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DAHNGC: A Graph Convolution Model for Drug-Disease Association Prediction by Using Heterogeneous Network.
    Zhong J; Cui P; Zhu Y; Xiao Q; Qu Z
    J Comput Biol; 2023 Sep; 30(9):1019-1033. PubMed ID: 37702623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.