These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38051617)
21. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs. Xuan P; Wang S; Cui H; Zhao Y; Zhang T; Wu P Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36088549 [TBL] [Abstract][Full Text] [Related]
22. DRGCL: Drug Repositioning via Semantic-enriched Graph Contrastive Learning. Jia X; Sun X; Wang K; Li M IEEE J Biomed Health Inform; 2024 Mar; PP():. PubMed ID: 38437145 [TBL] [Abstract][Full Text] [Related]
23. Drug repurposing based on the DTD-GNN graph neural network: revealing the relationships among drugs, targets and diseases. Li W; Ma W; Yang M; Tang X BMC Genomics; 2024 Jun; 25(1):584. PubMed ID: 38862928 [TBL] [Abstract][Full Text] [Related]
24. Drug repositioning based on weighted local information augmented graph neural network. Meng Y; Wang Y; Xu J; Lu C; Tang X; Peng T; Zhang B; Tian G; Yang J Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38019732 [TBL] [Abstract][Full Text] [Related]
25. A deep learning method for repurposing antiviral drugs against new viruses via multi-view nonnegative matrix factorization and its application to SARS-CoV-2. Su X; Hu L; You Z; Hu P; Wang L; Zhao B Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34965582 [TBL] [Abstract][Full Text] [Related]
26. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks. Xuan P; Sun H; Wang X; Zhang T; Pan S Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729 [TBL] [Abstract][Full Text] [Related]
27. MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning. Zhao BW; You ZH; Wong L; Zhang P; Li HY; Wang L Front Genet; 2021; 12():657182. PubMed ID: 34054920 [TBL] [Abstract][Full Text] [Related]
28. A weighted bilinear neural collaborative filtering approach for drug repositioning. Meng Y; Lu C; Jin M; Xu J; Zeng X; Yang J Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039838 [TBL] [Abstract][Full Text] [Related]
29. DRTerHGAT: A drug repurposing method based on the ternary heterogeneous graph attention network. He H; Xie J; Huang D; Zhang M; Zhao X; Ying Y; Wang J J Mol Graph Model; 2024 Jul; 130():108783. PubMed ID: 38677034 [TBL] [Abstract][Full Text] [Related]
30. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph. Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622 [TBL] [Abstract][Full Text] [Related]
31. DRONet: effectiveness-driven drug repositioning framework using network embedding and ranking learning. Yang K; Yang Y; Fan S; Xia J; Zheng Q; Dong X; Liu J; Liu Q; Lei L; Zhang Y; Li B; Gao Z; Zhang R; Liu B; Wang Z; Zhou X Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36562715 [TBL] [Abstract][Full Text] [Related]
32. In silico drug repositioning using deep learning and comprehensive similarity measures. Yi HC; You ZH; Wang L; Su XR; Zhou X; Jiang TH BMC Bioinformatics; 2021 Jun; 22(Suppl 3):293. PubMed ID: 34074242 [TBL] [Abstract][Full Text] [Related]
33. Learning Multi-Types of Neighbor Node Attributes and Semantics by Heterogeneous Graph Transformer and Multi-View Attention for Drug-Related Side-Effect Prediction. Xuan P; Li P; Cui H; Wang M; Nakaguchi T; Zhang T Molecules; 2023 Sep; 28(18):. PubMed ID: 37764319 [TBL] [Abstract][Full Text] [Related]
34. NEDD: a network embedding based method for predicting drug-disease associations. Zhou R; Lu Z; Luo H; Xiang J; Zeng M; Li M BMC Bioinformatics; 2020 Sep; 21(Suppl 13):387. PubMed ID: 32938396 [TBL] [Abstract][Full Text] [Related]
35. A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks. Ren ZH; You ZH; Yu CQ; Li LP; Guan YJ; Guo LX; Pan J Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070624 [TBL] [Abstract][Full Text] [Related]
36. A Multimodal Framework for Improving in Silico Drug Repositioning With the Prior Knowledge From Knowledge Graphs. Xiong Z; Huang F; Wang Z; Liu S; Zhang W IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(5):2623-2631. PubMed ID: 34375284 [TBL] [Abstract][Full Text] [Related]
37. Drug-Target Interaction Prediction Using Multi-Head Self-Attention and Graph Attention Network. Cheng Z; Yan C; Wu FX; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2208-2218. PubMed ID: 33956632 [TBL] [Abstract][Full Text] [Related]
38. Predicting CircRNA-Disease Associations via Feature Convolution Learning With Heterogeneous Graph Attention Network. Peng L; Yang C; Chen Y; Liu W IEEE J Biomed Health Inform; 2023 Jun; 27(6):3072-3082. PubMed ID: 37030839 [TBL] [Abstract][Full Text] [Related]
39. multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction. Xuan P; Zhang X; Zhang Y; Hu K; Nakaguchi T; Zhang T Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514190 [TBL] [Abstract][Full Text] [Related]
40. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network. Muniyappan S; Rayan AXA; Varrieth GT Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]