These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38051618)

  • 1. SMGCN: Multiple Similarity and Multiple Kernel Fusion Based Graph Convolutional Neural Network for Drug-Target Interactions Prediction.
    Wang W; Yu M; Sun B; Li J; Liu D; Zhang H; Wang X; Zhou Y
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(1):143-154. PubMed ID: 38051618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network.
    Muniyappan S; Rayan AXA; Varrieth GT
    Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting drug-protein interactions by preserving the graph information of multi source data.
    Wei J; Lu L; Shen T
    BMC Bioinformatics; 2024 Jan; 25(1):10. PubMed ID: 38177981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DTI-HETA: prediction of drug-target interactions based on GCN and GAT on heterogeneous graph.
    Shao K; Zhang Y; Wen Y; Zhang Z; He S; Bo X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KGE-UNIT: toward the unification of molecular interactions prediction based on knowledge graph and multi-task learning on drug discovery.
    Zhang C; Zang T; Zhao T
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38348746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network.
    Liu Z; Chen Q; Lan W; Pan H; Hao X; Pan S
    Front Genet; 2021; 12():650821. PubMed ID: 33912218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug-target interaction predication via multi-channel graph neural networks.
    Li Y; Qiao G; Wang K; Wang G
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34661237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bridging-BPs: a novel approach to predict potential drug-target interactions based on a bridging heterogeneous graph and BPs2vec.
    Li G; Zhang P; Sun W; Ren C; Wang L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A learning-based method for drug-target interaction prediction based on feature representation learning and deep neural network.
    Peng J; Li J; Shang X
    BMC Bioinformatics; 2020 Sep; 21(Suppl 13):394. PubMed ID: 32938374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities.
    Jiang L; Sun J; Wang Y; Ning Q; Luo N; Yin M
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35224614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing drug-target interaction prediction: a comprehensive graph-based approach integrating knowledge graph embedding and ProtBert pretraining.
    Djeddi WE; Hermi K; Ben Yahia S; Diallo G
    BMC Bioinformatics; 2023 Dec; 24(1):488. PubMed ID: 38114937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Method to Predict Drug-Target Interactions Based on Large-Scale Graph Representation Learning.
    Zhao BW; You ZH; Hu L; Guo ZH; Wang L; Chen ZH; Wong L
    Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting potential microbe-disease associations based on dual branch graph convolutional network.
    Chen J; Zhu Y; Yuan Q
    J Cell Mol Med; 2024 Aug; 28(15):e18571. PubMed ID: 39086148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GCHN-DTI: Predicting drug-target interactions by graph convolution on heterogeneous networks.
    Wang W; Liang S; Yu M; Liu D; Zhang H; Wang X; Zhou Y
    Methods; 2022 Oct; 206():101-107. PubMed ID: 36058415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-Target Interaction Prediction Using Multi-Head Self-Attention and Graph Attention Network.
    Cheng Z; Yan C; Wu FX; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2208-2218. PubMed ID: 33956632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graph regularized non-negative matrix factorization with prior knowledge consistency constraint for drug-target interactions prediction.
    Zhang J; Xie M
    BMC Bioinformatics; 2022 Dec; 23(1):564. PubMed ID: 36581822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple similarity drug-target interaction prediction with random walks and matrix factorization.
    Liu B; Papadopoulos D; Malliaros FD; Tsoumakas G; Papadopoulos AN
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying drug-target interactions based on graph convolutional network and deep neural network.
    Zhao T; Hu Y; Valsdottir LR; Zang T; Peng J
    Brief Bioinform; 2021 Mar; 22(2):2141-2150. PubMed ID: 32367110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction.
    Xuan P; Zhang X; Zhang Y; Hu K; Nakaguchi T; Zhang T
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35514190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.