These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 38051781)

  • 1. Targeting beta-adrenergic receptor pathways in melanoma: how stress modulates oncogenic immunity.
    Switzer B; Puzanov I; Gandhi S; Repasky EA
    Melanoma Res; 2024 Apr; 34(2):89-95. PubMed ID: 38051781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic Adrenergic Stress Contributes to Metabolic Dysfunction and an Exhausted Phenotype in T Cells in the Tumor Microenvironment.
    Qiao G; Chen M; Mohammadpour H; MacDonald CR; Bucsek MJ; Hylander BL; Barbi JJ; Repasky EA
    Cancer Immunol Res; 2021 Jun; 9(6):651-664. PubMed ID: 33762351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β2-adrenergic receptor expression in patients receiving bevacizumab therapy for metastatic melanoma.
    Schuster C; Akslen LA; Straume O
    Cancer Med; 2023 Sep; 12(17):17891-17900. PubMed ID: 37551424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-Adrenergic Signaling in Mice Housed at Standard Temperatures Suppresses an Effector Phenotype in CD8
    Bucsek MJ; Qiao G; MacDonald CR; Giridharan T; Evans L; Niedzwecki B; Liu H; Kokolus KM; Eng JW; Messmer MN; Attwood K; Abrams SI; Hylander BL; Repasky EA
    Cancer Res; 2017 Oct; 77(20):5639-5651. PubMed ID: 28819022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β2-Adrenergic Receptor Mediated Inhibition of T Cell Function and Its Implications for CAR-T Cell Therapy.
    Farooq MA; Ajmal I; Hui X; Chen Y; Ren Y; Jiang W
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase I Clinical Trial of Combination Propranolol and Pembrolizumab in Locally Advanced and Metastatic Melanoma: Safety, Tolerability, and Preliminary Evidence of Antitumor Activity.
    Gandhi S; Pandey MR; Attwood K; Ji W; Witkiewicz AK; Knudsen ES; Allen C; Tario JD; Wallace PK; Cedeno CD; Levis M; Stack S; Funchain P; Drabick JJ; Bucsek MJ; Puzanov I; Mohammadpour H; Repasky EA; Ernstoff MS
    Clin Cancer Res; 2021 Jan; 27(1):87-95. PubMed ID: 33127652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Norepinephrine promotes tumor microenvironment reactivity through β3-adrenoreceptors during melanoma progression.
    Calvani M; Pelon F; Comito G; Taddei ML; Moretti S; Innocenti S; Nassini R; Gerlini G; Borgognoni L; Bambi F; Giannoni E; Filippi L; Chiarugi P
    Oncotarget; 2015 Mar; 6(7):4615-32. PubMed ID: 25474135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ immunogenic clearance induced by a combination of photodynamic therapy and rho-kinase inhibition sensitizes immune checkpoint blockade response to elicit systemic antitumor immunity against intraocular melanoma and its metastasis.
    Kim S; Kim SA; Nam GH; Hong Y; Kim GB; Choi Y; Lee S; Cho Y; Kwon M; Jeong C; Kim S; Kim IS
    J Immunother Cancer; 2021 Jan; 9(1):. PubMed ID: 33479026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging β-Adrenergic Receptor Signaling Blockade for Improved Cancer Immunotherapy Through Biomimetic Nanovaccine.
    Yang C; He Y; Chen F; Zhang F; Shao D; Wang Z
    Small; 2023 Apr; 19(14):e2207029. PubMed ID: 36703529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental eustress modulates β-ARs/CCL2 axis to induce anti-tumor immunity and sensitize immunotherapy against liver cancer in mice.
    Liu C; Yang Y; Chen C; Li L; Li J; Wang X; Chu Q; Qiu L; Ba Q; Li X; Wang H
    Nat Commun; 2021 Sep; 12(1):5725. PubMed ID: 34593796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β2-adrenergic receptor signaling regulates metabolic pathways critical to myeloid-derived suppressor cell function within the TME.
    Mohammadpour H; MacDonald CR; McCarthy PL; Abrams SI; Repasky EA
    Cell Rep; 2021 Oct; 37(4):109883. PubMed ID: 34706232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of host β1- and β2-adrenergic receptors in a murine model of B16 melanoma: functional involvement of β3-adrenergic receptors.
    Sereni F; Dal Monte M; Filippi L; Bagnoli P
    Naunyn Schmiedebergs Arch Pharmacol; 2015 Dec; 388(12):1317-31. PubMed ID: 26285646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MIF inhibition as a strategy for overcoming resistance to immune checkpoint blockade therapy in melanoma.
    de Azevedo RA; Shoshan E; Whang S; Markel G; Jaiswal AR; Liu A; Curran MA; Travassos LR; Bar-Eli M
    Oncoimmunology; 2020 Dec; 9(1):1846915. PubMed ID: 33344042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intratumoral immunotherapy using a TLR2/3 agonist, L-pampo, induces robust antitumor immune responses and enhances immune checkpoint blockade.
    Lee WS; Kim DS; Kim JH; Heo Y; Yang H; Go EJ; Kim JH; Lee SJ; Ahn BC; Yum JS; Chon HJ; Kim C
    J Immunother Cancer; 2022 Jun; 10(6):. PubMed ID: 35764365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeted deletion of CD244 on monocytes promotes differentiation into anti-tumorigenic macrophages and potentiates PD-L1 blockade in melanoma.
    Kim J; Kim TJ; Chae S; Ha H; Park Y; Park S; Yoon CJ; Lim SA; Lee H; Kim J; Kim J; Im K; Lee K; Kim J; Kim D; Lee E; Shin MH; Park SI; Rhee I; Jung K; Lee J; Lee KH; Hwang D; Lee KM
    Mol Cancer; 2024 Feb; 23(1):45. PubMed ID: 38424542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells.
    Mohammadpour H; MacDonald CR; Qiao G; Chen M; Dong B; Hylander BL; McCarthy PL; Abrams SI; Repasky EA
    J Clin Invest; 2019 Dec; 129(12):5537-5552. PubMed ID: 31566578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. β
    Zhang M; Wang Q; Sun X; Yin Q; Chen J; Xu L; Xu C
    Prostate; 2020 Nov; 80(15):1328-1340. PubMed ID: 32894788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial sympathetic and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) blockades inhibit the murine melanoma growth by targeting infiltrating T cells.
    Wang B; Xu Z; Sunthamala N; Yaguchi T; Huang J; Kawakami Y; Gong Y; Tang H; Li S; Guo Y; Guo Y; Jinushi M
    Transl Cancer Res; 2021 Feb; 10(2):899-913. PubMed ID: 35116419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of β2-adrenergic receptor by (R,R')-4'-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells.
    Wnorowski A; Sadowska M; Paul RK; Singh NS; Boguszewska-Czubara A; Jimenez L; Abdelmohsen K; Toll L; Jozwiak K; Bernier M; Wainer IW
    Cell Signal; 2015 May; 27(5):997-1007. PubMed ID: 25703025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of β-Adrenergic Receptors Improves CD8
    Daher C; Vimeux L; Stoeva R; Peranzoni E; Bismuth G; Wieduwild E; Lucas B; Donnadieu E; Bercovici N; Trautmann A; Feuillet V
    Cancer Immunol Res; 2019 Nov; 7(11):1849-1863. PubMed ID: 31527069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.