These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 38051823)
1. Investigation of paraclinoid aneurysm formation by comparing the combined influence of hemodynamic parameters between aneurysmal and non-aneurysmal arteries. Yang H; Kim JJ; Kim YB; Cho KC; Oh JH J Cereb Blood Flow Metab; 2024 Aug; 44(8):1393-1403. PubMed ID: 38051823 [TBL] [Abstract][Full Text] [Related]
2. Hemodynamic vascular biomarkers for initiation of paraclinoid internal carotid artery aneurysms using patient-specific computational fluid dynamic simulation based on magnetic resonance imaging. Watanabe T; Isoda H; Takehara Y; Terada M; Naito T; Kosugi T; Onishi Y; Tanoi C; Izumi T Neuroradiology; 2018 May; 60(5):545-555. PubMed ID: 29520642 [TBL] [Abstract][Full Text] [Related]
3. Curvature effect on hemodynamic conditions at the inner bend of the carotid siphon and its relation to aneurysm formation. Lauric A; Hippelheuser J; Safain MG; Malek AM J Biomech; 2014 Sep; 47(12):3018-27. PubMed ID: 25062932 [TBL] [Abstract][Full Text] [Related]
4. Peak systolic or maximum intra-aneurysmal hemodynamic condition? Implications on normalized flow variables. Morales HG; Bonnefous O J Biomech; 2014 Jul; 47(10):2362-70. PubMed ID: 24861633 [TBL] [Abstract][Full Text] [Related]
5. Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries. Castro MA; Putman CM; Cebral JR AJNR Am J Neuroradiol; 2006; 27(10):2061-8. PubMed ID: 17110667 [TBL] [Abstract][Full Text] [Related]
6. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244 [TBL] [Abstract][Full Text] [Related]
7. Detection of Hemodynamic Characteristics Before Growth in Growing Cerebral Aneurysms by Analyzing Time-of-Flight Magnetic Resonance Angiography Images Alone: Preliminary Results. Kimura H; Hayashi K; Taniguchi M; Hosoda K; Fujita A; Seta T; Tomiyama A; Kohmura E World Neurosurg; 2019 Feb; 122():e1439-e1448. PubMed ID: 30465954 [TBL] [Abstract][Full Text] [Related]
8. High-fidelity virtual stenting: modeling of flow diverter deployment for hemodynamic characterization of complex intracranial aneurysms. Xiang J; Damiano RJ; Lin N; Snyder KV; Siddiqui AH; Levy EI; Meng H J Neurosurg; 2015 Oct; 123(4):832-40. PubMed ID: 26090829 [TBL] [Abstract][Full Text] [Related]
9. Hemodynamic characteristics associated with cerebral aneurysm formation in patients with carotid occlusion. Shakur SF; Alaraj A; Mendoza-Elias N; Osama M; Charbel FT J Neurosurg; 2019 Mar; 130(3):917-922. PubMed ID: 29726778 [TBL] [Abstract][Full Text] [Related]
10. Hemodynamic alterations after stent implantation in 15 cases of intracranial aneurysm. Wang C; Tian Z; Liu J; Jing L; Paliwal N; Wang S; Zhang Y; Xiang J; Siddiqui AH; Meng H; Yang X Acta Neurochir (Wien); 2016 Apr; 158(4):811-819. PubMed ID: 26746828 [TBL] [Abstract][Full Text] [Related]
11. Hemodynamic and morphological characteristics of a growing cerebral aneurysm. Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117 [TBL] [Abstract][Full Text] [Related]
12. The effect of aneurysm geometry on the intra-aneurysmal flow condition. Tateshima S; Chien A; Sayre J; Cebral J; Viñuela F Neuroradiology; 2010 Dec; 52(12):1135-41. PubMed ID: 20373097 [TBL] [Abstract][Full Text] [Related]
13. Hemodynamic Effect of Flow Diverter and Coils in Treatment of Large and Giant Intracranial Aneurysms. Jing L; Zhong J; Liu J; Yang X; Paliwal N; Meng H; Wang S; Zhang Y World Neurosurg; 2016 May; 89():199-207. PubMed ID: 26852712 [TBL] [Abstract][Full Text] [Related]
14. How patient-specific do internal carotid artery inflow rates need to be for computational fluid dynamics of cerebral aneurysms? Najafi M; Cancelliere NM; Brina O; Bouillot P; Vargas MI; Delattre BM; Pereira VM; Steinman DA J Neurointerv Surg; 2021 May; 13(5):459-464. PubMed ID: 32732256 [TBL] [Abstract][Full Text] [Related]
15. High curvature of the internal carotid artery is associated with the presence of intracranial aneurysms. Lauric A; Safain MG; Hippelheuser J; Malek AM J Neurointerv Surg; 2014 Dec; 6(10):733-9. PubMed ID: 24335804 [TBL] [Abstract][Full Text] [Related]
16. Wall shear stress gradient is independently associated with middle cerebral artery aneurysm development: a case-control CFD patient-specific study based on 77 patients. Zimny M; Kawlewska E; Hebda A; Wolański W; Ładziński P; Kaspera W BMC Neurol; 2021 Jul; 21(1):281. PubMed ID: 34281533 [TBL] [Abstract][Full Text] [Related]
17. Molecular alterations associated with aneurysmal remodeling are localized in the high hemodynamic stress region of a created carotid bifurcation. Wang Z; Kolega J; Hoi Y; Gao L; Swartz DD; Levy EI; Mocco J; Meng H Neurosurgery; 2009 Jul; 65(1):169-77; discussion 177-8. PubMed ID: 19574839 [TBL] [Abstract][Full Text] [Related]
18. Hemodynamic characteristics of large unruptured internal carotid artery aneurysms prior to rupture: a case control study. Liu J; Fan J; Xiang J; Zhang Y; Yang X J Neurointerv Surg; 2016 Apr; 8(4):367-72. PubMed ID: 25653231 [TBL] [Abstract][Full Text] [Related]
19. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. Jou LD; Lee DH; Morsi H; Mawad ME AJNR Am J Neuroradiol; 2008 Oct; 29(9):1761-7. PubMed ID: 18599576 [TBL] [Abstract][Full Text] [Related]
20. Hemodynamic impingement and the initiation of intracranial side-wall aneurysms. Riccardello GJ; Changa AR; Al-Mufti F; Singh IP; Gandhi C; Roman M; Prestigiacomo CJ Interv Neuroradiol; 2018 Jun; 24(3):288-296. PubMed ID: 29444617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]