BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38051945)

  • 1. Planar Chiral Rhodium Complex Based on the Tetrahydrofluorenyl Core for Enantioselective Catalysis.
    Kharitonov VB; Podyacheva E; Chusov D; Nelyubina YV; Muratov DV; Loginov DA
    Org Lett; 2023 Dec; 25(49):8906-8911. PubMed ID: 38051945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Planar-Chiral Rhodium(III) Catalyst with a Sterically Demanding Cyclopentadienyl Ligand and Its Application in the Enantioselective Synthesis of Dihydroisoquinolones.
    Trifonova EA; Ankudinov NM; Mikhaylov AA; Chusov DA; Nelyubina YV; Perekalin DS
    Angew Chem Int Ed Engl; 2018 Jun; 57(26):7714-7718. PubMed ID: 29624840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral Cyclopentadienyls: Enabling Ligands for Asymmetric Rh(III)-Catalyzed C-H Functionalizations.
    Ye B; Cramer N
    Acc Chem Res; 2015 May; 48(5):1308-18. PubMed ID: 25884306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Easy Access to Versatile Catalytic Systems for C-H Activation and Reductive Amination Based on Tetrahydrofluorenyl Rhodium(III) Complexes.
    Kharitonov VB; Runikhina SA; Nelyubina YV; Muratov DV; Chusov D; Loginov DA
    Chemistry; 2021 Jul; 27(42):10903-10912. PubMed ID: 33783057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective synthesis of chiral sulfones by Rh-catalyzed asymmetric addition of boronic acids to alpha,beta-unsaturated 2-pyridyl sulfones.
    Mauleón P; Alonso I; Rivero MR; Carretero JC
    J Org Chem; 2007 Dec; 72(26):9924-35. PubMed ID: 18047369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Synthesis of Pyrrolidinyl Ferrocene-Containing Ligands and Their Application in Highly Enantioselective Rhodium-Catalyzed Olefin Hydrogenation.
    Li X; Brennan TB; Kingston C; Ortin Y; Guiry PJ
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.
    Huang L; Zhu J; Jiao G; Wang Z; Yu X; Deng WP; Tang W
    Angew Chem Int Ed Engl; 2016 Mar; 55(14):4527-31. PubMed ID: 26933831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodium-Catalyzed ortho-Olefination of Sterically Demanding Benzamides: Application to the Asymmetric Synthesis of Axially Chiral Benzamides.
    Yoshimura R; Tanaka K
    Chemistry; 2020 Apr; 26(22):4969-4973. PubMed ID: 32073186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective Synthesis of Azoniahelicenes by Rh-Catalyzed C-H Annulation with Alkynes.
    Wang Q; Zhang WW; Zheng C; Gu Q; You SL
    J Am Chem Soc; 2021 Jan; 143(1):114-120. PubMed ID: 33356232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of axial chirality by rhodium-catalyzed asymmetric dehydrogenative Heck coupling of biaryl compounds with alkenes.
    Zheng J; You SL
    Angew Chem Int Ed Engl; 2014 Nov; 53(48):13244-7. PubMed ID: 25346171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a Chiral Silicon Center by Rhodium-Catalyzed Enantioselective Intramolecular Hydrosilylation.
    Naganawa Y; Namba T; Kawagishi M; Nishiyama H
    Chemistry; 2015 Jun; 21(26):9319-22. PubMed ID: 26017852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric cyclopropanation of electron-rich alkenes by the racemic diene rhodium catalyst: the chiral poisoning approach.
    Trifonova EA; Ankudinov NM; Chusov DA; Nelyubina YV; Perekalin DS
    Chem Commun (Camb); 2022 Jun; 58(47):6709-6712. PubMed ID: 35593764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical Enantioselective C-H Annulation by Achiral Rhodium(III)/Chiral Brønsted Base Domino Catalysis.
    Li Y; Xu J; Oliveira JCA; Scheremetjew A; Ackermann L
    ACS Catal; 2024 Jun; 14(11):8160-8167. PubMed ID: 38868099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to N-Unprotected Ketimines: Efficient Synthesis of Cipargamin.
    Zhu J; Huang L; Dong W; Li N; Yu X; Deng WP; Tang W
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16119-16123. PubMed ID: 31468680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chiral Cp-rhodium(III)-catalyzed asymmetric hydroarylations of 1,1-disubstituted alkenes.
    Ye B; Donets PA; Cramer N
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):507-11. PubMed ID: 24311026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rh(I)-Catalyzed Enantioselective Arylation of Cyclic
    Shimamoto R; Tsurusaki A; Kamikawa K
    J Org Chem; 2023 Jun; 88(12):7882-7887. PubMed ID: 36854106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amide-directed catalytic asymmetric hydroboration of trisubstituted alkenes.
    Smith SM; Takacs JM
    J Am Chem Soc; 2010 Feb; 132(6):1740-1. PubMed ID: 20092272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of chiral 3-arylpyrrolidines via the enantioselective 1,4-addition of arylboronic acids to fumaric esters catalyzed by Rh(I)/chiral diene complexes.
    Chung YC; Janmanchi D; Wu HL
    Org Lett; 2012 Jun; 14(11):2766-9. PubMed ID: 22594683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective Rh(I)-Catalyzed C-H Arylation of Ferroceneformaldehydes.
    Liu CX; Zhao F; Gu Q; You SL
    ACS Cent Sci; 2023 Nov; 9(11):2036-2043. PubMed ID: 38033798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.