These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38051965)

  • 21.
    Cheng JKJ; Unnikrishnan M
    Microbiology (Reading); 2023 Feb; 169(2):. PubMed ID: 36848200
    [No Abstract]   [Full Text] [Related]  

  • 22. Shifts in the Gut Metabolome and
    Fletcher JR; Erwin S; Lanzas C; Theriot CM
    mSphere; 2018; 3(2):. PubMed ID: 29600278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional profile of host microbiome indicates
    Nzabarushimana E; Tang H
    Gut Microbes; 2022; 14(1):2135963. PubMed ID: 36289064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The potential of microbiome replacement therapies for Clostridium difficile infection.
    Buckley AM; Moura IB; Wilcox MH
    Curr Opin Gastroenterol; 2022 Jan; 38(1):1-6. PubMed ID: 34871192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clostridioides difficile carriage in animals and the associated changes in the host fecal microbiota.
    Thanissery R; McLaren MR; Rivera A; Reed AD; Betrapally NS; Burdette T; Winston JA; Jacob M; Callahan BJ; Theriot CM
    Anaerobe; 2020 Dec; 66():102279. PubMed ID: 33022384
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An Osmotic Laxative Renders Mice Susceptible to Prolonged Clostridioides difficile Colonization and Hinders Clearance.
    Tomkovich S; Taylor A; King J; Colovas J; Bishop L; McBride K; Royzenblat S; Lesniak NA; Bergin IL; Schloss PD
    mSphere; 2021 Oct; 6(5):e0062921. PubMed ID: 34585964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel therapies and preventative strategies for primary and recurrent Clostridium difficile infections.
    Dieterle MG; Rao K; Young VB
    Ann N Y Acad Sci; 2019 Jan; 1435(1):110-138. PubMed ID: 30238983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Next-Generation Probiotics Targeting Clostridium difficile through Precursor-Directed Antimicrobial Biosynthesis.
    Spinler JK; Auchtung J; Brown A; Boonma P; Oezguen N; Ross CL; Luna RA; Runge J; Versalovic J; Peniche A; Dann SM; Britton RA; Haag A; Savidge TC
    Infect Immun; 2017 Oct; 85(10):. PubMed ID: 28760934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fecal microbiota transplantation for treatment of patients with recurrent
    Voth E; Khanna S
    Expert Rev Anti Infect Ther; 2020 Jul; 18(7):669-676. PubMed ID: 32266848
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial and metabolic interactions between the gastrointestinal tract and Clostridium difficile infection.
    Theriot CM; Young VB
    Gut Microbes; 2014; 5(1):86-95. PubMed ID: 24335555
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The
    Wickramage I; Peng Z; Chakraborty S; Harmanus C; Kuijper EJ; Alrabaa S; Smits WK; Sun X
    Microbiol Spectr; 2023 Jun; 11(3):e0377722. PubMed ID: 37125917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The potential utility of fecal (or intestinal) microbiota transplantation in controlling infectious diseases.
    Ghani R; Mullish BH; Roberts LA; Davies FJ; Marchesi JR
    Gut Microbes; 2022; 14(1):2038856. PubMed ID: 35230889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbiota-based Therapies Clostridioides difficile infection that is refractory to antibiotic therapy.
    Mehta SR; Yen EF
    Transl Res; 2021 Apr; 230():197-207. PubMed ID: 33278650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigallocatechin-3-Gallate Improves Intestinal Gut Microbiota Homeostasis and Ameliorates
    Wu Z; Shen J; Xu Q; Xiang Q; Chen Y; Lv L; Zheng B; Wang Q; Wang S; Li L
    Nutrients; 2022 Sep; 14(18):. PubMed ID: 36145133
    [No Abstract]   [Full Text] [Related]  

  • 35. Gut microbiota changes associated with
    Gonzales-Luna AJ; Carlson TJ; Garey KW
    Gut Microbes; 2023; 15(1):2223345. PubMed ID: 37318134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Butyrate Differentiates Permissiveness to Clostridioides difficile Infection and Influences Growth of Diverse C. difficile Isolates.
    Pensinger DA; Fisher AT; Dobrila HA; Van Treuren W; Gardner JO; Higginbottom SK; Carter MM; Schumann B; Bertozzi CR; Anikst V; Martin C; Robilotti EV; Chow JM; Buck RH; Tompkins LS; Sonnenburg JL; Hryckowian AJ
    Infect Immun; 2023 Feb; 91(2):e0057022. PubMed ID: 36692308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Signal Versus Noise: How to Analyze the Microbiome and Make Progress on Antimicrobial Resistance.
    Golob JL; Rao K
    J Infect Dis; 2021 Jun; 223(12 Suppl 2):S214-S221. PubMed ID: 33880565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microbial Interdomain Interactions Delineate the Disruptive Intestinal Homeostasis in Clostridioides difficile Infection.
    Herrera G; Arboleda JC; Pérez-Jaramillo JE; Patarroyo MA; Ramírez JD; Muñoz M
    Microbiol Spectr; 2022 Oct; 10(5):e0050222. PubMed ID: 36154277
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Initial Gut Microbiota and Response to Antibiotic Perturbation Influence Clostridioides difficile Clearance in Mice.
    Tomkovich S; Stough JMA; Bishop L; Schloss PD
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33087520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of an Assay To Determine Colonization Resistance to Clostridioides difficile in Fecal Samples from Healthy Subjects and Those Treated with Antibiotics.
    Harris HC; Best EL; Normington C; Saint-Lu N; Sablier-Gallis F; de Gunzburg J; Andremont A; Wilcox MH; Chilton CH
    Antimicrob Agents Chemother; 2020 Dec; 65(1):. PubMed ID: 33139292
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.