BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38052002)

  • 1. Prediction of Spheroid Cell Death Using Fluorescence Staining and Convolutional Neural Networks.
    Srisongkram T; Syahid NF; Piyasawetkul T; Thirawatthanasak P; Khamtang P; Sawasnopparat N; Tookkane D; Weerapreeyakul N; Puthongking P
    Chem Res Toxicol; 2023 Dec; 36(12):1980-1989. PubMed ID: 38052002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SpheroScan: a user-friendly deep learning tool for spheroid image analysis.
    Akshay A; Katoch M; Abedi M; Shekarchizadeh N; Besic M; Burkhard FC; Bigger-Allen A; Adam RM; Monastyrskaya K; Gheinani AH
    Gigascience; 2022 Dec; 12():. PubMed ID: 37889008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpheroScan: A User-Friendly Deep Learning Tool for Spheroid Image Analysis.
    Akshay A; Katoch M; Abedi M; Besic M; Shekarchizadeh N; Burkhard FC; Bigger-Allen A; Adam RM; Monastyrskaya K; Gheinani AH
    bioRxiv; 2023 Jun; ():. PubMed ID: 37425923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Multiparametric Drug-Scoring Method for High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer.
    Cribbes S; Kessel S; McMenemy S; Qiu J; Chan LL
    SLAS Discov; 2017 Jun; 22(5):547-557. PubMed ID: 28346096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Assessment of Cancer Drug Efficacy On Breast Tumor Spheroids in Aggrewell™400 Plates Using Image Cytometry.
    Mukundan S; Bell J; Teryek M; Hernandez C; Love AC; Parekkadan B; Chan LL
    J Fluoresc; 2022 Mar; 32(2):521-531. PubMed ID: 34989923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of high resolution computed tomography image assisted classification model of middle ear diseases based on 3D-convolutional neural network.
    Su R; Song J; Wang Z; Mao S; Mao Y; Wu X; Hou M
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2022 Aug; 47(8):1037-1048. PubMed ID: 36097771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Melanoma (SK-MEL-2) Cell Growth between Three-Dimensional (3D) and Two-Dimensional (2D) Cell Cultures with Fourier Transform Infrared (FTIR) Microspectroscopy.
    Srisongkram T; Weerapreeyakul N; Thumanu K
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32531986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel spheroid-based co-culture model mimics loss of keratinocyte differentiation, melanoma cell invasion, and drug-induced selection of ABCB5-expressing cells.
    Klicks J; Maßlo C; Kluth A; Rudolf R; Hafner M
    BMC Cancer; 2019 Apr; 19(1):402. PubMed ID: 31035967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.
    Joo MW; Ko T; Kim MS; Lee YS; Shin SH; Chung YG; Lee HK
    Clin Orthop Relat Res; 2023 Nov; 481(11):2247-2256. PubMed ID: 37615504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Rice W; Qiu J; Chan LL
    Cytometry A; 2017 Sep; 91(9):883-892. PubMed ID: 28618188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of convolutional neural networks for recognition of tenogenic differentiation based on cellular morphology.
    Dursun G; Tandale SB; Gulakala R; Eschweiler J; Tohidnezhad M; Markert B; Stoffel M
    Comput Methods Programs Biomed; 2021 Sep; 208():106279. PubMed ID: 34343743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional Deep Convolutional Neural Networks for Automated Myocardial Scar Quantification in Hypertrophic Cardiomyopathy: A Multicenter Multivendor Study.
    Fahmy AS; Neisius U; Chan RH; Rowin EJ; Manning WJ; Maron MS; Nezafat R
    Radiology; 2020 Jan; 294(1):52-60. PubMed ID: 31714190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated glioma grading on conventional MRI images using deep convolutional neural networks.
    Zhuge Y; Ning H; Mathen P; Cheng JY; Krauze AV; Camphausen K; Miller RW
    Med Phys; 2020 Jul; 47(7):3044-3053. PubMed ID: 32277478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of multislice inputs to convolutional neural networks for medical image segmentation.
    Vu MH; Grimbergen G; Nyholm T; Löfstedt T
    Med Phys; 2020 Dec; 47(12):6216-6231. PubMed ID: 33169365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological and histological changes of glioma cells immediately after 5-aminolevulinic acid mediated photodynamic therapy.
    Kamoshima Y; Terasaka S; Kuroda S; Iwasaki Y
    Neurol Res; 2011 Sep; 33(7):739-46. PubMed ID: 21756554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: A new era of skin cancer screening?
    Cerminara SE; Cheng P; Kostner L; Huber S; Kunz M; Maul JT; Böhm JS; Dettwiler CF; Geser A; Jakopović C; Stoffel LM; Peter JK; Levesque M; Navarini AA; Maul LV
    Eur J Cancer; 2023 Sep; 190():112954. PubMed ID: 37453242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Apoptosis and Viability High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Qiu J; Chan LL
    SLAS Discov; 2018 Feb; 23(2):202-210. PubMed ID: 28915356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serum analysis based on SERS combined with 2D convolutional neural network and Gramian angular field for breast cancer screening.
    Cheng N; Gao Y; Ju S; Kong X; Lyu J; Hou L; Jin L; Shen B
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 May; 312():124054. PubMed ID: 38382221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. White blood cells detection and classification based on regional convolutional neural networks.
    Kutlu H; Avci E; Özyurt F
    Med Hypotheses; 2020 Feb; 135():109472. PubMed ID: 31760248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.