These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38052084)

  • 21. Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future.
    Muckli L; Petro LS; Smith FW
    Behav Brain Sci; 2013 Jun; 36(3):221. PubMed ID: 23663531
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments.
    Cross L; Cockburn J; Yue Y; O'Doherty JP
    Neuron; 2021 Feb; 109(4):724-738.e7. PubMed ID: 33326755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predictive Processing in Cognitive Robotics: A Review.
    Ciria A; Schillaci G; Pezzulo G; Hafner VV; Lara B
    Neural Comput; 2021 Apr; 33(5):1402-1432. PubMed ID: 34496394
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling language and cognition with deep unsupervised learning: a tutorial overview.
    Zorzi M; Testolin A; Stoianov IP
    Front Psychol; 2013; 4():515. PubMed ID: 23970869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compositional Learning of Human Activities With a Self-Organizing Neural Architecture.
    Mici L; Parisi GI; Wermter S
    Front Robot AI; 2019; 6():72. PubMed ID: 33501087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An information theoretic score for learning hierarchical concepts.
    Madani O
    Front Comput Neurosci; 2023; 17():1082502. PubMed ID: 37201121
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predictive hierarchical reinforcement learning for path-efficient mapless navigation with moving target.
    Li H; Luo B; Song W; Yang C
    Neural Netw; 2023 Aug; 165():677-688. PubMed ID: 37385022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical Reinforcement Learning, Sequential Behavior, and the Dorsal Frontostriatal System.
    Janssen M; LeWarne C; Burk D; Averbeck BB
    J Cogn Neurosci; 2022 Jul; 34(8):1307-1325. PubMed ID: 35579977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchical clustering optimizes the tradeoff between compositionality and expressivity of task structures for flexible reinforcement learning.
    Liu RG; Frank MJ
    Artif Intell; 2022 Nov; 312():. PubMed ID: 36711165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning.
    Luu TM; Vu T; Nguyen T; Yoo CD
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A neural signature of hierarchical reinforcement learning.
    Ribas-Fernandes JJ; Solway A; Diuk C; McGuire JT; Barto AG; Niv Y; Botvinick MM
    Neuron; 2011 Jul; 71(2):370-9. PubMed ID: 21791294
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensory processing and categorization in cortical and deep neural networks.
    Pinotsis DA; Siegel M; Miller EK
    Neuroimage; 2019 Nov; 202():116118. PubMed ID: 31445126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constructing the hierarchy of predictive auditory sequences in the marmoset brain.
    Jiang Y; Komatsu M; Chen Y; Xie R; Zhang K; Xia Y; Gui P; Liang Z; Wang L
    Elife; 2022 Feb; 11():. PubMed ID: 35174784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emergence of belief-like representations through reinforcement learning.
    Hennig JA; Romero Pinto SA; Yamaguchi T; Linderman SW; Uchida N; Gershman SJ
    PLoS Comput Biol; 2023 Sep; 19(9):e1011067. PubMed ID: 37695776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whatever next? Predictive brains, situated agents, and the future of cognitive science.
    Clark A
    Behav Brain Sci; 2013 Jun; 36(3):181-204. PubMed ID: 23663408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.
    Weilnhammer VA; Stuke H; Sterzer P; Schmack K
    J Neurosci; 2018 May; 38(21):5008-5021. PubMed ID: 29712780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal and state abstractions for efficient learning, transfer, and composition in humans.
    Xia L; Collins AGE
    Psychol Rev; 2021 Jul; 128(4):643-666. PubMed ID: 34014709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning.
    Blakeman S; Mareschal D
    Neural Netw; 2022 Jun; 150():408-421. PubMed ID: 35358888
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.