These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 3805228)

  • 1. Packings and stationary phases in preparative column liquid chromatography.
    Unger KK; Janzen R
    J Chromatogr; 1986 Nov; 373(2):227-64. PubMed ID: 3805228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the properties of stationary phases for liquid chromatography in aqueous mobile phases using aromatic sulphonic acids as the test compounds.
    Jandera P; Bocian S; Molíková M; Buszewski B
    J Chromatogr A; 2009 Jan; 1216(2):237-48. PubMed ID: 19081105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of large sample loads on column lifetime in preparative-scale liquid chromatography.
    Tice PA; Mazsaroff I; Lin NT; Regnier FE
    J Chromatogr; 1987 Nov; 410(1):43-51. PubMed ID: 3429556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropellicular stationary phases for high-performance liquid chromatography of double-stranded DNA.
    Huber CG
    J Chromatogr A; 1998 May; 806(1):3-30. PubMed ID: 9639878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative importance of column and adsorption parameters on the productivity in preparative liquid chromatography II: Investigation of separation systems with competitive Langmuir adsorption isotherms.
    Forssén P; Samuelsson J; Fornstedt T
    J Chromatogr A; 2014 Jun; 1347():72-9. PubMed ID: 24831425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and modeling of monolithic stationary phases: application to preparative chromatography.
    Ghose S; Cramer SM
    J Chromatogr A; 2001 Aug; 928(1):13-23. PubMed ID: 11589468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of particle size and shell thickness of core-shell packing materials on optimum experimental conditions in preparative chromatography.
    Horváth K; Felinger A
    J Chromatogr A; 2015 Aug; 1407():100-5. PubMed ID: 26162666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of porous silica packing materials for preparative ion-exchange chromatography.
    Schmuck MN; Gooding DL; Gooding KM
    J Chromatogr; 1986 May; 359():323-30. PubMed ID: 3016000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ganoderma species discrimination by dual-mode chromatographic fingerprinting: a study on stationary phase effects in hydrophilic interaction chromatography and reduction of sample misclassification rate by additional use of reversed-phase chromatography.
    Chen Y; Bicker W; Wu J; Xie MY; Lindner W
    J Chromatogr A; 2010 Feb; 1217(8):1255-65. PubMed ID: 20031144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-column visualization of sample migration in liquid chromatography.
    Shalliker RA; Broyles BS; Guiochon G
    Anal Chem; 2000 Jan; 72(2):323-32. PubMed ID: 10658326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber-based monolithic columns for liquid chromatography.
    Ladisch M; Zhang L
    Anal Bioanal Chem; 2016 Oct; 408(25):6871-83. PubMed ID: 27553948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of internal surface reversed-phase silica supports for liquid chromatography.
    Cook SE; Pinkerton TC
    J Chromatogr; 1986 Oct; 368(2):233-48. PubMed ID: 3023416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography.
    Qiao L; Dou A; Shi X; Li H; Shan Y; Lu X; Xu G
    J Chromatogr A; 2013 Apr; 1286():137-45. PubMed ID: 23489487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of weak cation exchange packings for chromatographic separation of proteins using "click chemistry''.
    Zhao K; Bai Q; Song C; Wang F; Yang F
    J Sep Sci; 2012 Apr; 35(8):907-14. PubMed ID: 22589150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic impact of particle shape in slurry packed liquid chromatography columns.
    Lottes F; Arlt W; Minceva M; Stenby EH
    J Chromatogr A; 2009 Jul; 1216(30):5687-95. PubMed ID: 19524930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance.
    Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pore and particle size on the frontal uptake of proteins. Implications for preparative anion-exchange chromatography.
    Kopaciewicz W; Fulton S; Lee SY
    J Chromatogr; 1987 Nov; 409():111-24. PubMed ID: 3693479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of operating parameters on the preparative gradient elution chromatography of insulins.
    Cox GB
    J Chromatogr; 1992 May; 599(1-2):195-203. PubMed ID: 1618989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatography of proteins on hydrophobic interaction and ion-exchange chromatographic matrices: mobile phase contributions to selectivity.
    Heinitz ML; Kennedy L; Kopaciewicz W; Regnier FE
    J Chromatogr; 1988 Jun; 443():173-82. PubMed ID: 3170685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of polyethylene standards from decalin on liquid chromatography column packings.
    Macko T; Pasch H; Denayer JF
    J Chromatogr A; 2003 Jun; 1002(1-2):55-62. PubMed ID: 12885078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.