These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 38052358)
1. Technoeconomic assessment for the viable exploitation of biomass residues by an innovative pyrolysis-anaerobic digestion processing plant. Aravani VP; Papadakis VG Environ Res; 2024 Feb; 243():117835. PubMed ID: 38052358 [TBL] [Abstract][Full Text] [Related]
2. Anaerobic digestion of different agricultural wastes: A techno-economic assessment. Li Y; Han Y; Zhang Y; Luo W; Li G Bioresour Technol; 2020 Nov; 315():123836. PubMed ID: 32707503 [TBL] [Abstract][Full Text] [Related]
3. Biochemical Μethane potential of most promising agricultural residues in Northern and Southern Greece. Aravani VP; Tsigkou K; Papadakis VG; Kornaros M Chemosphere; 2022 Jun; 296():133985. PubMed ID: 35176306 [TBL] [Abstract][Full Text] [Related]
4. Optimization of integrated anaerobic digestion and pyrolysis for biogas, biochar and bio-oil production from the perspective of energy flow. Yang J; Tang S; Song B; Jiang Y; Zhu W; Zhou W; Yang G Sci Total Environ; 2023 May; 872():162154. PubMed ID: 36804988 [TBL] [Abstract][Full Text] [Related]
5. Techno-economic and life cycle analysis of a farm-scale anaerobic digestion plant in Iowa. Aui A; Li W; Wright MM Waste Manag; 2019 Apr; 89():154-164. PubMed ID: 31079728 [TBL] [Abstract][Full Text] [Related]
6. Reactor performance and energy analysis of solid state anaerobic co-digestion of dairy manure with corn stover and tomato residues. Li Y; Xu F; Li Y; Lu J; Li S; Shah A; Zhang X; Zhang H; Gong X; Li G Waste Manag; 2018 Mar; 73():130-139. PubMed ID: 29223482 [TBL] [Abstract][Full Text] [Related]
7. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Paudel SR; Banjara SP; Choi OK; Park KY; Kim YM; Lee JW Bioresour Technol; 2017 Dec; 245(Pt A):1194-1205. PubMed ID: 28899674 [TBL] [Abstract][Full Text] [Related]
8. Profitability analysis of thermochemical processes for biomass-waste valorization: a comparison of dry vs wet treatments. González-Arias J; Sánchez ME; Cara-Jiménez J Sci Total Environ; 2022 Mar; 811():152240. PubMed ID: 34896145 [TBL] [Abstract][Full Text] [Related]
9. Techno-economic assessment of anaerobic co-digestion of livestock manure and cheese whey (Cow, Goat & Sheep) at small to medium dairy farms. Mostafa Imeni S; Pelaz L; Corchado-Lopo C; Maria Busquets A; Ponsá S; Colón J Bioresour Technol; 2019 Nov; 291():121872. PubMed ID: 31377516 [TBL] [Abstract][Full Text] [Related]
10. Technoeconomic Feasibility of a Sunflower Husk Fast Pyrolysis Value Chain for the Production of Advanced Biofuels. Nieder-Heitmann M; Savadkouhi SS; Venderbosch R; Leijenhorst E; van der Pol E; Vleeming H Energy Fuels; 2022 Nov; 36(21):13084-13093. PubMed ID: 36366752 [TBL] [Abstract][Full Text] [Related]
11. Reactor performance and economic evaluation of anaerobic co-digestion of dairy manure with corn stover and tomato residues under liquid, hemi-solid, and solid state conditions. Li Y; Lu J; Xu F; Li Y; Li D; Wang G; Li S; Zhang H; Wu Y; Shah A; Li G Bioresour Technol; 2018 Dec; 270():103-112. PubMed ID: 30212770 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the biogas potential of agricultural biomass waste for energy applications in Greece: A case study of the western Greece region. Moustakas K; Sotiropoulos D; Vakalis S Waste Manag Res; 2021 Mar; 39(3):438-447. PubMed ID: 33183166 [TBL] [Abstract][Full Text] [Related]
13. Anaerobic co-digestion of recalcitrant agricultural wastes: Characterizing of biochemical parameters of digestate and its impacts on soil ecosystem. Muscolo A; Settineri G; Papalia T; Attinà E; Basile C; Panuccio MR Sci Total Environ; 2017 May; 586():746-752. PubMed ID: 28214122 [TBL] [Abstract][Full Text] [Related]
14. Integrated thermochemical conversion process for valorizing mixed agricultural and dairy waste to nutrient-enriched biochars and biofuels. Lin JC; Mariuzza D; Volpe M; Fiori L; Ceylan S; Goldfarb JL Bioresour Technol; 2021 May; 328():124765. PubMed ID: 33588358 [TBL] [Abstract][Full Text] [Related]
15. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation. Chiumenti A; da Borso F; Limina S Waste Manag; 2018 Jan; 71():704-710. PubMed ID: 28389052 [TBL] [Abstract][Full Text] [Related]
16. Utilization of current pyrolysis technology to convert biomass and manure waste into biochar for soil remediation: A review. Tan S; Zhou G; Yang Q; Ge S; Liu J; Cheng YW; Yek PNY; Wan Mahari WA; Kong SH; Chang JS; Sonne C; Chong WWF; Lam SS Sci Total Environ; 2023 Mar; 864():160990. PubMed ID: 36539095 [TBL] [Abstract][Full Text] [Related]
17. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy. Riva C; Schievano A; D'Imporzano G; Adani F Waste Manag; 2014 Aug; 34(8):1429-35. PubMed ID: 24841069 [TBL] [Abstract][Full Text] [Related]
18. Process and technoeconomic analysis of bioethanol production from residual biomass of marine macroalgae Ulva lactuca. Gengiah K; Rajendran N; Al-Ghanim KA; Govindarajan M; Gurunathan B Sci Total Environ; 2023 Apr; 868():161661. PubMed ID: 36669660 [TBL] [Abstract][Full Text] [Related]
19. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Xing Y; Li Z; Fan Y; Hou H Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259 [TBL] [Abstract][Full Text] [Related]