These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38052497)

  • 1. Is Novelty Predictable?
    Fannjiang C; Listgarten J
    Cold Spring Harb Perspect Biol; 2024 Feb; 16(2):. PubMed ID: 38052497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-MGCL: Molecule Graph Contrastive Learning Based on Transformer for Molecular Property Prediction.
    Guan X; Zhang D
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3851-3862. PubMed ID: 37856269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Digital Pharmaceutical Sciences.
    Damiati SA
    AAPS PharmSciTech; 2020 Jul; 21(6):206. PubMed ID: 32715351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building Chemical Property Models for Energetic Materials from Small Datasets Using a Transfer Learning Approach.
    Lansford JL; Barnes BC; Rice BM; Jensen KF
    J Chem Inf Model; 2022 Nov; 62(22):5397-5410. PubMed ID: 36240441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using machine learning to anticipate tipping points and extrapolate to post-tipping dynamics of non-stationary dynamical systems.
    Patel D; Ott E
    Chaos; 2023 Feb; 33(2):023143. PubMed ID: 36859201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining genetic algorithm with machine learning strategies for designing potent antimicrobial peptides.
    Boone K; Wisdom C; Camarda K; Spencer P; Tamerler C
    BMC Bioinformatics; 2021 May; 22(1):239. PubMed ID: 33975547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Limits of Prediction for Machine Learning in Drug Discovery.
    von Korff M; Sander T
    Front Pharmacol; 2022; 13():832120. PubMed ID: 35359835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspectives on Development of Optoelectronic Materials in Artificial Intelligence Age.
    Yuan T; Song X; Shi Y; Wei S; Han Y; Yang L; Zhang Y; Li X; Li Y; Shen L; Fan L
    Chem Asian J; 2024 Mar; 19(6):e202301088. PubMed ID: 38317532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual novelty, curiosity, and intrinsic reward in machine learning and the brain.
    Jaegle A; Mehrpour V; Rust N
    Curr Opin Neurobiol; 2019 Oct; 58():167-174. PubMed ID: 31614282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enabling interpretable machine learning for biological data with reliability scores.
    Ahlquist KD; Sugden LA; Ramachandran S
    PLoS Comput Biol; 2023 May; 19(5):e1011175. PubMed ID: 37235578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trends in Deep Learning for Property-driven Drug Design.
    Born J; Manica M
    Curr Med Chem; 2021; 28(38):7862-7886. PubMed ID: 34325627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction and Construction of Energetic Materials Based on Machine Learning Methods.
    Zang X; Zhou X; Bian H; Jin W; Pan X; Jiang J; Koroleva MY; Shen R
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Small Step Toward Generalizability: Training a Machine Learning Scoring Function for Structure-Based Virtual Screening.
    Scantlebury J; Vost L; Carbery A; Hadfield TE; Turnbull OM; Brown N; Chenthamarakshan V; Das P; Grosjean H; von Delft F; Deane CM
    J Chem Inf Model; 2023 May; 63(10):2960-2974. PubMed ID: 37166179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PTML Model for Selection of Nanoparticles, Anticancer Drugs, and Vitamins in the Design of Drug-Vitamin Nanoparticle Release Systems for Cancer Cotherapy.
    Santana R; Zuluaga R; Gañán P; Arrasate S; Onieva E; Montemore MM; González-Díaz H
    Mol Pharm; 2020 Jul; 17(7):2612-2627. PubMed ID: 32459098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder.
    Oliveira AF; Da Silva JLF; Quiles MG
    J Chem Inf Model; 2022 Feb; 62(4):817-828. PubMed ID: 35174705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction to Machine Learning for Ophthalmologists.
    Consejo A; Melcer T; Rozema JJ
    Semin Ophthalmol; 2019; 34(1):19-41. PubMed ID: 30500302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying Machine Learning to Stem Cell Culture and Differentiation.
    Ashraf M; Khalilitousi M; Laksman Z
    Curr Protoc; 2021 Sep; 1(9):e261. PubMed ID: 34529356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Drug Molecules to Thermoset Shape Memory Polymers: A Machine Learning Approach.
    Yan C; Feng X; Li G
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60508-60521. PubMed ID: 34878247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.