These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38052608)

  • 1. Bird sound recognition based on adaptive frequency cepstral coefficient and improved support vector machine using a hunter-prey optimizer.
    Chen X; Zeng Z
    Math Biosci Eng; 2023 Oct; 20(11):19438-19453. PubMed ID: 38052608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosis of cardiac abnormalities based on phonocardiogram using a novel fuzzy matching feature extraction method.
    Yang W; Xu J; Xiang J; Yan Z; Zhou H; Wen B; Kong H; Zhu R; Li W
    BMC Med Inform Decis Mak; 2022 Sep; 22(1):230. PubMed ID: 36056352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bird sound spectrogram decomposition through Non-Negative Matrix Factorization for the acoustic classification of bird species.
    Ludeña-Choez J; Quispe-Soncco R; Gallardo-Antolín A
    PLoS One; 2017; 12(6):e0179403. PubMed ID: 28628630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Respiratory Sound Based Classification of Chronic Obstructive Pulmonary Disease: a Risk Stratification Approach in Machine Learning Paradigm.
    Haider NS; Singh BK; Periyasamy R; Behera AK
    J Med Syst; 2019 Jun; 43(8):255. PubMed ID: 31254141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A temporal dependency feature in lower dimension for lung sound signal classification.
    Kwon AM; Kang K
    Sci Rep; 2022 May; 12(1):7889. PubMed ID: 35551232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-scale and multi-domain heart sound feature-based machine learning model for ACC/AHA heart failure stage classification.
    Zheng Y; Guo X; Wang Y; Qin J; Lv F
    Physiol Meas; 2022 Jun; 43(6):. PubMed ID: 35512699
    [No Abstract]   [Full Text] [Related]  

  • 7. A Novel Bird Sound Recognition Method Based on Multifeature Fusion and a Transformer Encoder.
    Zhang S; Gao Y; Cai J; Yang H; Zhao Q; Pan F
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonocardiogram Signal Processing for Automatic Diagnosis of Congenital Heart Disorders through Fusion of Temporal and Cepstral Features.
    Aziz S; Khan MU; Alhaisoni M; Akram T; Altaf M
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32640710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition Method for Broiler Sound Signals Based on Multi-Domain Sound Features and Classification Model.
    Tao W; Wang G; Sun Z; Xiao S; Wu Q; Zhang M
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-feature fusion and improved BO and IGWO metaheuristics based models for automatically diagnosing the sleep disorders from sleep sounds.
    Akyol S; Yildirim M; Alatas B
    Comput Biol Med; 2023 May; 157():106768. PubMed ID: 36907034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mel frequency cepstral coefficient temporal feature integration for classifying squeak and rattle noise.
    Abeysinghe A; Fard M; Jazar R; Zambetta F; Davy J
    J Acoust Soc Am; 2021 Jul; 150(1):193. PubMed ID: 34340510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A heart sound classification method based on complete ensemble empirical modal decomposition with adaptive noise permutation entropy and support vector machine].
    Liu M; Wu Q; Ding S; Pan L; Liu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Apr; 39(2):311-319. PubMed ID: 35523552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study of respiratory sounds classification methods based on cepstral analysis and artificial neural networks.
    Semmad A; Bahoura M
    Comput Biol Med; 2024 Mar; 171():108190. PubMed ID: 38387384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Heart Sounds Based on the Wavelet Fractal and Twin Support Vector Machine.
    Li J; Ke L; Du Q
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of oestrus cows based on vocalisation characteristics and machine learning technique using a dual-channel-equipped acoustic tag.
    Wang J; Chen H; Wang J; Zhao K; Li X; Liu B; Zhou Y
    Animal; 2023 Jun; 17(6):100811. PubMed ID: 37150135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applicability of VGGish embedding in bee colony monitoring: comparison with MFCC in colony sound classification.
    Di N; Sharif MZ; Hu Z; Xue R; Yu B
    PeerJ; 2023; 11():e14696. PubMed ID: 36721779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach.
    Fang SH; Tsao Y; Hsiao MJ; Chen JY; Lai YH; Lin FC; Wang CT
    J Voice; 2019 Sep; 33(5):634-641. PubMed ID: 29567049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM.
    He Y; Zhang W; Ma Y; Li J; Ma B
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection.
    Chen H; Yuan X; Li J; Pei Z; Zheng X
    Comput Methods Programs Biomed; 2019 Sep; 178():163-173. PubMed ID: 31416545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Support vector machine based on adaptive acceleration particle swarm optimization.
    Abdulameer MH; Sheikh Abdullah SN; Othman ZA
    ScientificWorldJournal; 2014; 2014():835607. PubMed ID: 24790584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.