These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 38052672)
41. Comparison between neuroendocrine carcinomas and well-differentiated neuroendocrine tumors of the pancreas using dynamic enhanced CT. Park HJ; Kim HJ; Kim KW; Kim SY; Choi SH; You MW; Hwang HS; Hong SM Eur Radiol; 2020 Sep; 30(9):4772-4782. PubMed ID: 32346794 [TBL] [Abstract][Full Text] [Related]
42. Prediction of the World Health Organization Grade of rectal neuroendocrine tumors based on CT histogram analysis. Liang P; Xu C; Tan F; Li S; Chen M; Hu D; Kamel I; Duan Y; Li Z Cancer Med; 2021 Jan; 10(2):595-604. PubMed ID: 33263225 [TBL] [Abstract][Full Text] [Related]
43. A radiomics study to predict invasive pulmonary adenocarcinoma appearing as pure ground-glass nodules. Cai J; Liu H; Yuan H; Wu Y; Xu Q; Lv Y; Li J; Fu J; Ye J Clin Radiol; 2021 Feb; 76(2):143-151. PubMed ID: 33187676 [TBL] [Abstract][Full Text] [Related]
44. Prediction of the activity of Crohn's disease based on CT radiomics combined with machine learning models. Li T; Liu Y; Guo J; Wang Y J Xray Sci Technol; 2022; 30(6):1155-1168. PubMed ID: 35988261 [TBL] [Abstract][Full Text] [Related]
45. Prediction of the characteristics of aggressiveness of pancreatic neuroendocrine neoplasms (PanNENs) based on CT radiomic features. Mori M; Palumbo D; Muffatti F; Partelli S; Mushtaq J; Andreasi V; Prato F; Ubeira MG; Palazzo G; Falconi M; Fiorino C; De Cobelli F Eur Radiol; 2023 Jun; 33(6):4412-4421. PubMed ID: 36547673 [TBL] [Abstract][Full Text] [Related]
46. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359 [No Abstract] [Full Text] [Related]
47. CT Enhancement and 3D Texture Analysis of Pancreatic Neuroendocrine Neoplasms. D'Onofrio M; Ciaravino V; Cardobi N; De Robertis R; Cingarlini S; Landoni L; Capelli P; Bassi C; Scarpa A Sci Rep; 2019 Feb; 9(1):2176. PubMed ID: 30778137 [TBL] [Abstract][Full Text] [Related]
48. Differentiation of intrapancreatic accessory spleen from small hypervascular neuroendocrine tumor of the pancreas: textural analysis on contrast-enhanced computed tomography. Lin X; Xu L; Wu A; Guo C; Chen X; Wang Z Acta Radiol; 2019 May; 60(5):553-560. PubMed ID: 30086651 [TBL] [Abstract][Full Text] [Related]
49. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Li J; Wu X; Mao N; Zheng G; Zhang H; Mou Y; Jia C; Mi J; Song X Front Endocrinol (Lausanne); 2021; 12():741698. PubMed ID: 34745008 [TBL] [Abstract][Full Text] [Related]
50. Texture analysis and machine learning algorithms accurately predict histologic grade in small (< 4 cm) clear cell renal cell carcinomas: a pilot study. Haji-Momenian S; Lin Z; Patel B; Law N; Michalak A; Nayak A; Earls J; Loew M Abdom Radiol (NY); 2020 Mar; 45(3):789-798. PubMed ID: 31822969 [TBL] [Abstract][Full Text] [Related]
51. Differentiation of atypical pancreatic neuroendocrine tumors from pancreatic ductal adenocarcinomas: Using whole-tumor CT texture analysis as quantitative biomarkers. Li J; Lu J; Liang P; Li A; Hu Y; Shen Y; Hu D; Li Z Cancer Med; 2018 Oct; 7(10):4924-4931. PubMed ID: 30151864 [TBL] [Abstract][Full Text] [Related]
52. Contrast-enhanced MDCT in patients with pancreatic neuroendocrine tumours: correlation with histological findings and diagnostic performance in differentiation between tumour grades. Belousova E; Karmazanovsky G; Kriger A; Kalinin D; Mannelli L; Glotov A; Karelskaya N; Paklina O; Kaldarov A Clin Radiol; 2017 Feb; 72(2):150-158. PubMed ID: 27890421 [TBL] [Abstract][Full Text] [Related]
53. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
54. Clinical and CT Quantitative Features for Predicting Liver Metastases in Patients with Pancreatic Neuroendocrine Tumors: A Study with Prospective/External Validation. Pan Y; Chen HY; Chen JY; Wang XJ; Zhou JP; Shi L; Yu RS Acad Radiol; 2024 Sep; 31(9):3612-3619. PubMed ID: 38490841 [TBL] [Abstract][Full Text] [Related]
55. Differentiating nontuberculous mycobacterium pulmonary disease from pulmonary tuberculosis through the analysis of the cavity features in CT images using radiomics. Yan Q; Wang W; Zhao W; Zuo L; Wang D; Chai X; Cui J BMC Pulm Med; 2022 Jan; 22(1):4. PubMed ID: 34991543 [TBL] [Abstract][Full Text] [Related]
56. A radiomics method based on MR FS-T2WI sequence for diagnosing of autosomal dominant polycystic kidney disease progression. Cong L; Hua QQ; Huang ZQ; Ma QL; Wang XM; Huang CC; Xu JX; Ma T Eur Rev Med Pharmacol Sci; 2021 Sep; 25(18):5769-5780. PubMed ID: 34604968 [TBL] [Abstract][Full Text] [Related]
58. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Mao B; Ma J; Duan S; Xia Y; Tao Y; Zhang L Eur Radiol; 2021 Jul; 31(7):4576-4586. PubMed ID: 33447862 [TBL] [Abstract][Full Text] [Related]
59. Computed tomography-based radiomics machine learning classifiers to differentiate type I and type II epithelial ovarian cancers. Li J; Li X; Ma J; Wang F; Cui S; Ye Z Eur Radiol; 2023 Jul; 33(7):5193-5204. PubMed ID: 36515713 [TBL] [Abstract][Full Text] [Related]
60. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer. Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]