These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38052800)

  • 1. General deep learning framework for emissivity engineering.
    Yu S; Zhou P; Xi W; Chen Z; Deng Y; Luo X; Li W; Shiomi J; Hu R
    Light Sci Appl; 2023 Dec; 12(1):291. PubMed ID: 38052800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and Temporal Modulation of Thermal Emission.
    Coppens ZJ; Valentine JG
    Adv Mater; 2017 Oct; 29(39):. PubMed ID: 28833653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser Dynamic Control of the Thermal Emissivity of a Planar Cavity Structure Based on a Phase-Change Material.
    Kang D; Kim Y; Lee M
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4925-4933. PubMed ID: 38229510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based inverse design optimization of efficient multilayer thermal emitters in the near-infrared broad spectrum.
    Pan Q; Zhou S; Chen S; Yu C; Guo Y; Shuai Y
    Opt Express; 2023 Jul; 31(15):23944-23951. PubMed ID: 37475234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST.
    Du KK; Li Q; Lyu YB; Ding JC; Lu Y; Cheng ZY; Qiu M
    Light Sci Appl; 2017 Jan; 6(1):e16194. PubMed ID: 30167194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Ionic Liquids on Effectiveness of Tuning the Emissivity of Multilayer Graphene.
    Huang H; Li J; Ke H; Du Y; Peng W; Dai M; Zhang Y; Zhang XA
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26256-26263. PubMed ID: 34028249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrally and Spatially Selective Emitters Using Polymer Hybrid Spoof Plasmonics.
    Lee GJ; Kim DH; Heo SY; Song YM
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):53206-53214. PubMed ID: 33172255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage.
    Xi W; Lee YJ; Yu S; Chen Z; Shiomi J; Kim SK; Hu R
    Nat Commun; 2023 Aug; 14(1):4694. PubMed ID: 37542047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput screening of a high-Q mid-infrared Tamm emitter by material informatics.
    Xi W; Liu Y; Song J; Hu R; Luo X
    Opt Lett; 2021 Feb; 46(4):888-891. PubMed ID: 33577540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultranarrow-Band Wavelength-Selective Thermal Emission with Aperiodic Multilayered Metamaterials Designed by Bayesian Optimization.
    Sakurai A; Yada K; Simomura T; Ju S; Kashiwagi M; Okada H; Nagao T; Tsuda K; Shiomi J
    ACS Cent Sci; 2019 Feb; 5(2):319-326. PubMed ID: 30834320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-adaptive control of infrared emissivity in a solution-processed plasmonic structure.
    Ono M; Takata M; Shirata M; Yoshihiro T; Tani T; Naya M; Saiki T
    Opt Express; 2021 Oct; 29(22):36048-36060. PubMed ID: 34809025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly tunable thermal emitter with vanadium dioxide metamaterials for radiative cooling.
    Jia Y; Wang X; Yin H; Yao H; Wang J; Fan C
    Appl Opt; 2021 Jul; 60(19):5699-5706. PubMed ID: 34263864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable thermal emissivity structures based on bioinspired self-shape materials.
    Athanasopoulos N; Siakavellas NJ
    Sci Rep; 2015 Dec; 5():17682. PubMed ID: 26635316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning-Assisted Active Metamaterials with Heat-Enhanced Thermal Transport.
    Jin P; Xu L; Xu G; Li J; Qiu CW; Huang J
    Adv Mater; 2024 Feb; 36(5):e2305791. PubMed ID: 37869962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal inorganic nano- and microparticles for passive daytime radiative cooling.
    Woo HY; Choi Y; Chung H; Lee DW; Paik T
    Nano Converg; 2023 Apr; 10(1):17. PubMed ID: 37071232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Scalable Microstructure Photonic Coating Fabricated by Roll-to-Roll "Defects" for Daytime Subambient Passive Radiative Cooling.
    Liu S; Sui C; Harbinson M; Pudlo M; Perera H; Zhang Z; Liu R; Ku Z; Islam MD; Liu Y; Wu R; Zhu Y; Genzer J; Khan SA; Hsu PC; Ryu JE
    Nano Lett; 2023 Sep; 23(17):7767-7774. PubMed ID: 37487140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radiative-Cooling Composites with Enhanced Infrared Emissivity by Structural Infrared Scattering through Indium Tin Oxide Nanoparticles in a Polymer Matrix.
    Park S; Pal SK; Otoufat T; Kim G
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16026-16033. PubMed ID: 36920422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiwavelength camouflage metamaterials with adjustable emissivity.
    Gao H; Liang Y; Huang Y; Huang H; Li R; Peng W
    Opt Express; 2023 Oct; 31(22):36770-36780. PubMed ID: 38017820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Daytime radiative cooling multilayer films designed by a machine learning method and genetic algorithm.
    Li S; An M; Zheng Z; Gou Y; Lian W; Yu W; Zhang P
    Appl Opt; 2023 Jun; 62(16):4359-4369. PubMed ID: 37706929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.