These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 38053171)

  • 1. Challenges and prospects of yeast-based microbial oil production within a biorefinery concept.
    Gallego-García M; Susmozas A; Negro MJ; Moreno AD
    Microb Cell Fact; 2023 Dec; 22(1):246. PubMed ID: 38053171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodiesel Production From Lignocellulosic Biomass Using Oleaginous Microbes: Prospects for Integrated Biofuel Production.
    Chintagunta AD; Zuccaro G; Kumar M; Kumar SPJ; Garlapati VK; Postemsky PD; Kumar NSS; Chandel AK; Simal-Gandara J
    Front Microbiol; 2021; 12():658284. PubMed ID: 34475852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodiesel from lignocellulosic biomass--prospects and challenges.
    Yousuf A
    Waste Manag; 2012 Nov; 32(11):2061-7. PubMed ID: 22475852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From agro-industrial wastes to single cell oils: a step towards prospective biorefinery.
    Diwan B; Parkhey P; Gupta P
    Folia Microbiol (Praha); 2018 Sep; 63(5):547-568. PubMed ID: 29687420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From low-cost substrates to Single Cell Oils synthesized by oleaginous yeasts.
    Qin L; Liu L; Zeng AP; Wei D
    Bioresour Technol; 2017 Dec; 245(Pt B):1507-1519. PubMed ID: 28642053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of microbial oils by the oleaginous yeast Rhodotorula graminis S1/2R in a medium based on agro-industrial by-products.
    Martinez-Silveira A; Garmendia G; Rufo C; Vero S
    World J Microbiol Biotechnol; 2022 Jan; 38(3):46. PubMed ID: 35083575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid wastes as a renewable feedstock for yeast biodiesel production: Opportunities and challenges.
    Singh S; Pandey D; Saravanabhupathy S; Daverey A; Dutta K; Arunachalam K
    Environ Res; 2022 May; 207():112100. PubMed ID: 34619127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungi (Mold)-Based Lipid Production.
    Yang Y; Heidari F; Hu B
    Methods Mol Biol; 2019; 1995():51-89. PubMed ID: 31148121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current progress in lipid-based biofuels: Feedstocks and production technologies.
    Wang J; Singer SD; Souto BA; Asomaning J; Ullah A; Bressler DC; Chen G
    Bioresour Technol; 2022 May; 351():127020. PubMed ID: 35307524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodiesel production and characteristics from waste frying oils: sources, challenges, and circular economic perspective.
    Senusi W; Ahmad MI; Binhweel F; Shalfoh E; Alsaedi S; Shakir MA
    Environ Sci Pollut Res Int; 2024 May; 31(23):33239-33258. PubMed ID: 38696017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses.
    Tan ECD; Hawkins TR; Lee U; Tao L; Meyer PA; Wang M; Thompson T
    Environ Sci Technol; 2021 Jun; 55(11):7561-7570. PubMed ID: 33998807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prospects for microbial biodiesel production.
    Shi S; Valle-Rodríguez JO; Siewers V; Nielsen J
    Biotechnol J; 2011 Mar; 6(3):277-85. PubMed ID: 21328544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coproducts of algae and yeast-derived single cell oils: A critical review of their role in improving biorefinery sustainability.
    Parsons S; Allen MJ; Chuck CJ
    Bioresour Technol; 2020 May; 303():122862. PubMed ID: 32037189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioengineering to Accelerate Biodiesel Production for a Sustainable Biorefinery.
    Rathore D; Sevda S; Prasad S; Venkatramanan V; Chandel AK; Kataki R; Bhadra S; Channashettar V; Bora N; Singh A
    Bioengineering (Basel); 2022 Oct; 9(11):. PubMed ID: 36354528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The history, state of the art and future prospects for oleaginous yeast research.
    Abeln F; Chuck CJ
    Microb Cell Fact; 2021 Dec; 20(1):221. PubMed ID: 34876155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing Life-Cycle Emissions of Biofuels for Marine Applications: Hydrothermal Liquefaction of Wet Wastes, Pyrolysis of Wood, Fischer-Tropsch Synthesis of Landfill Gas, and Solvolysis of Wood.
    Masum FH; Zaimes GG; Tan ECD; Li S; Dutta A; Ramasamy KK; Hawkins TR
    Environ Sci Technol; 2023 Aug; 57(34):12701-12712. PubMed ID: 37590157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production.
    Mukhtar H; Suliman SM; Shabbir A; Mumtaz MW; Rashid U; Rahimuddin SA
    Protein Pept Lett; 2018; 25(2):195-201. PubMed ID: 29359654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New biofuel alternatives: integrating waste management and single cell oil production.
    Martínez EJ; Raghavan V; González-Andrés F; Gómez X
    Int J Mol Sci; 2015 Apr; 16(5):9385-405. PubMed ID: 25918941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products.
    Palazzolo MA; Garcia-Perez M
    Biotechnol Adv; 2022; 54():107791. PubMed ID: 34192583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safflower-based biorefinery producing a broad spectrum of biofuels and biochemicals: A life cycle assessment perspective.
    Hosseinzadeh-Bandbafha H; Nazemi F; Khounani Z; Ghanavati H; Shafiei M; Karimi K; Lam SS; Aghbashlo M; Tabatabaei M
    Sci Total Environ; 2022 Jan; 802():149842. PubMed ID: 34455274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.