These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38053335)

  • 1. Machine-learning-based methods to generate conformational ensembles of disordered proteins.
    Taneja I; Lasker K
    Biophys J; 2024 Jan; 123(1):101-113. PubMed ID: 38053335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct generation of protein conformational ensembles via machine learning.
    Janson G; Valdes-Garcia G; Heo L; Feig M
    Nat Commun; 2023 Feb; 14(1):774. PubMed ID: 36774359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WASCO: A Wasserstein-based Statistical Tool to Compare Conformational Ensembles of Intrinsically Disordered Proteins.
    González-Delgado J; Sagar A; Zanon C; Lindorff-Larsen K; Bernadó P; Neuvial P; Cortés J
    J Mol Biol; 2023 Jul; 435(14):168053. PubMed ID: 36934808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Conformational Ensembles of Intrinsically Disordered Proteins: From Molecular Dynamics to Machine Learning.
    Aupič J; Pokorná P; Ruthstein S; Magistrato A
    J Phys Chem Lett; 2024 Aug; 15(32):8177-8186. PubMed ID: 39093570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Generation of Dynamic Protein Conformational Ensembles.
    Zheng LE; Barethiya S; Nordquist E; Chen J
    Molecules; 2023 May; 28(10):. PubMed ID: 37241789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferable deep generative modeling of intrinsically disordered protein conformations.
    Janson G; Feig M
    PLoS Comput Biol; 2024 May; 20(5):e1012144. PubMed ID: 38781245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Stage and Future Perspectives for Homology Modeling, Molecular Dynamics Simulations, Machine Learning with Molecular Dynamics, and Quantum Computing for Intrinsically Disordered Proteins and Proteins with Intrinsically Disordered Regions.
    Coskuner-Weber O; Uversky VN
    Curr Protein Pept Sci; 2024; 25(2):163-171. PubMed ID: 38275091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational ensembles of the human intrinsically disordered proteome.
    Tesei G; Trolle AI; Jonsson N; Betz J; Knudsen FE; Pesce F; Johansson KE; Lindorff-Larsen K
    Nature; 2024 Feb; 626(8000):897-904. PubMed ID: 38297118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational ensembles of intrinsically disordered proteins and flexible multidomain proteins.
    Thomasen FE; Lindorff-Larsen K
    Biochem Soc Trans; 2022 Feb; 50(1):541-554. PubMed ID: 35129612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transferable deep generative modeling of intrinsically disordered protein conformations.
    Janson G; Feig M
    bioRxiv; 2024 Feb; ():. PubMed ID: 38370653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PED in 2024: improving the community deposition of structural ensembles for intrinsically disordered proteins.
    Ghafouri H; Lazar T; Del Conte A; Tenorio Ku LG; ; Tompa P; Tosatto SCE; Monzon AM
    Nucleic Acids Res; 2024 Jan; 52(D1):D536-D544. PubMed ID: 37904608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing the transferability of a coarse-grained model to intrinsically disordered proteins.
    Rutter GO; Brown AH; Quigley D; Walsh TR; Allen MP
    Phys Chem Chem Phys; 2015 Dec; 17(47):31741-9. PubMed ID: 26562397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Protocol for Determining Conformational Ensembles of Intrinsically Disordered Proteins.
    Best RB
    Methods Mol Biol; 2020; 2141():413-427. PubMed ID: 32696369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing Coarse-Grained Modeling and Monte Carlo Simulations to Evaluate the Conformational Ensemble of Intrinsically Disordered Proteins and Regions.
    Cragnell C; Rieloff E; Skepö M
    J Mol Biol; 2018 Aug; 430(16):2478-2492. PubMed ID: 29573987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence guided conformational mining of intrinsically disordered proteins.
    Gupta A; Dey S; Hicks A; Zhou HX
    Commun Biol; 2022 Jun; 5(1):610. PubMed ID: 35725761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DIPEND: An Open-Source Pipeline to Generate Ensembles of Disordered Segments Using Neighbor-Dependent Backbone Preferences.
    Harmat Z; Dudola D; Gáspári Z
    Biomolecules; 2021 Oct; 11(10):. PubMed ID: 34680137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Curated Conformational Ensembles of Intrinsically Disordered Proteins in the Protein Ensemble Database.
    Quaglia F; Lazar T; Hatos A; Tompa P; Piovesan D; Tosatto SCE
    Curr Protoc; 2021 Jul; 1(7):e192. PubMed ID: 34252246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Simulations of Intrinsically Disordered Proteins and Their Binding Mechanisms.
    Chu X; Nagpal S; Muñoz V
    Methods Mol Biol; 2022; 2376():343-362. PubMed ID: 34845619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refinement of Peptide Conformational Ensembles by 2D IR Spectroscopy: Application to Ala‒Ala‒Ala.
    Feng CJ; Dhayalan B; Tokmakoff A
    Biophys J; 2018 Jun; 114(12):2820-2832. PubMed ID: 29925019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.