BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38053423)

  • 1. RNA-Seq Analysis of ceRNA-Related Networks in the Regulatory Metabolic Pathway of Mice with Diabetic Nephropathy Subjected to Empagliflozin Intervention.
    Wu T; Zhang Z; Huang H; Wu X
    Arch Esp Urol; 2023 Nov; 76(9):680-689. PubMed ID: 38053423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinformatics Analysis of the Mechanisms of Diabetic Nephropathy
    Guo M; Dai Y; Jiang L; Gao J
    Front Endocrinol (Lausanne); 2022; 13():934022. PubMed ID: 35909518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying C1QB, ITGAM, and ITGB2 as potential diagnostic candidate genes for diabetic nephropathy using bioinformatics analysis.
    Hu Y; Yu Y; Dong H; Jiang W
    PeerJ; 2023; 11():e15437. PubMed ID: 37250717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic expression profiling and bioinformatics analysis on diabetic nephrology with ginsenoside Rg3.
    Wang J; Cui C; Fu L; Xiao Z; Xie N; Liu Y; Yu L; Wang H; Luo B
    Mol Med Rep; 2016 Aug; 14(2):1162-72. PubMed ID: 27279428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive analysis of diabetic nephropathy expression profile based on weighted gene co-expression network analysis algorithm.
    Gholaminejad A; Fathalipour M; Roointan A
    BMC Nephrol; 2021 Jul; 22(1):245. PubMed ID: 34215202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and Bioinformatics Analysis of the miRNA-mRNA Regulatory Network in Diabetic Nephropathy.
    Li Y; Xu Y; Hou Y; Li R
    J Healthc Eng; 2021; 2021():8161701. PubMed ID: 34840704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular investigation of candidate genes for pyroptosis-induced inflammation in diabetic retinopathy.
    Wang N; Ding L; Liu D; Zhang Q; Zheng G; Xia X; Xiong S
    Front Endocrinol (Lausanne); 2022; 13():918605. PubMed ID: 35957838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of tubulointerstitial genes and ceRNA networks involved in diabetic nephropathy via integrated bioinformatics approaches.
    Cao H; Rao X; Jia J; Yan T; Li D
    Hereditas; 2022 Sep; 159(1):36. PubMed ID: 36154667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The topological key lncRNA H2k2 from the ceRNA network promotes mesangial cell proliferation in diabetic nephropathy
    Chen W; Peng R; Sun Y; Liu H; Zhang L; Peng H; Zhang Z
    FASEB J; 2019 Oct; 33(10):11492-11506. PubMed ID: 31336052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of key genes and biological regulatory mechanisms in diabetic nephropathy: Meta-analysis of gene expression datasets.
    Hojjati F; Roointan A; Gholaminejad A; Eshraghi Y; Gheisari Y
    Nefrologia (Engl Ed); 2023; 43(5):575-586. PubMed ID: 36681521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the shared molecular mechanism of microvascular and macrovascular complications in diabetes: Seeking the hub of circulatory system injury.
    Yuchen C; Hejia Z; Fanke M; Qixin D; Liyang C; Xi G; Yanxia C; Xiongyi Y; Zhuohang X; Guoguo Y; Min F
    Front Endocrinol (Lausanne); 2023; 14():1032015. PubMed ID: 36755923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole transcriptome analysis of diabetic nephropathy in the db/db mouse model of type 2 diabetes.
    Wen L; Zhang Z; Peng R; Zhang L; Liu H; Peng H; Sun Y
    J Cell Biochem; 2019 Oct; 120(10):17520-17533. PubMed ID: 31106482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a TF-miRNA-mRNA Regulatory Network for Diabetic Nephropathy.
    Dong F; Zheng L; Yang G
    Arch Esp Urol; 2024 Jan; 77(1):104-112. PubMed ID: 38374020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Based on Network Pharmacology Tools to Investigate the Molecular Mechanism of Cordyceps sinensis on the Treatment of Diabetic Nephropathy.
    Li Y; Wang L; Xu B; Zhao L; Li L; Xu K; Tang A; Zhou S; Song L; Zhang X; Zhan H
    J Diabetes Res; 2021; 2021():8891093. PubMed ID: 33628839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinformatics prediction and experimental verification of key biomarkers for diabetic kidney disease based on transcriptome sequencing in mice.
    Zhao J; He K; Du H; Wei G; Wen Y; Wang J; Zhou X; Wang J
    PeerJ; 2022; 10():e13932. PubMed ID: 36157062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network pharmacology-based identification of miRNA expression of Astragalus membranaceus in the treatment of diabetic nephropathy.
    Dai Y; Guo M; Jiang L; Gao J
    Medicine (Baltimore); 2022 Feb; 101(5):e28747. PubMed ID: 35119030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the Mechanism of Complement System in Diabetic Nephropathy via Bioinformatics Analysis.
    Xu B; Wang L; Zhan H; Zhao L; Wang Y; Shen M; Xu K; Li L; Luo X; Zhou S; Tang A; Liu G; Song L; Li Y
    J Diabetes Res; 2021; 2021():5546199. PubMed ID: 34124269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated Bioinformatics and Clinical Correlation Analysis of Key Genes, Pathways, and Potential Therapeutic Agents Related to Diabetic Nephropathy.
    Chen S; Chen L; Jiang H
    Dis Markers; 2022; 2022():9204201. PubMed ID: 35637650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of the gene expression profile of the male and female BTBR mice with diabetic nephropathy.
    Xue R; Wang Y; Geng L; Xiao H; Kumar V; Lan X; Malhotra A; Singhal PC; Chen J
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128720. PubMed ID: 38101684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of miRNAs-genes regulatory network in diabetic nephropathy based on bioinformatics analysis.
    Yang F; Cui Z; Deng H; Wang Y; Chen Y; Li H; Yuan L
    Medicine (Baltimore); 2019 Jul; 98(27):e16225. PubMed ID: 31277135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.