These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38053603)
41. Feasibility of ethanol production from coffee husks. Gouvea BM; Torres C; Franca AS; Oliveira LS; Oliveira ES Biotechnol Lett; 2009 Sep; 31(9):1315-9. PubMed ID: 19466561 [TBL] [Abstract][Full Text] [Related]
42. Alkaline hydrolysis of spent aromatic biomass for production of phenolic aldehydes, lignin, and cellulose. Jyoti ; Dwivedi P; Negi P; Chauhan R; Gosavi SW; Mishra BB Bioresour Technol; 2023 Nov; 387():129659. PubMed ID: 37573982 [TBL] [Abstract][Full Text] [Related]
43. Microencapsulation of organic coffee husk polyphenols: Effects on release, bioaccessibility, and antioxidant capacity of phenolics in a simulated gastrointestinal tract. Silva GS; Gomes MHG; de Carvalho LM; Abreu TL; Dos Santos Lima M; Madruga MS; Kurozawa LE; Bezerra TKA Food Chem; 2024 Feb; 434():137435. PubMed ID: 37713755 [TBL] [Abstract][Full Text] [Related]
44. Structural Characteristics of the Guaiacyl-Rich Lignins From Rice ( Rosado MJ; Rencoret J; Marques G; Gutiérrez A; Del Río JC Front Plant Sci; 2021; 12():640475. PubMed ID: 33679856 [TBL] [Abstract][Full Text] [Related]
45. Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water. Shi W; Jia J; Gao Y; Zhao Y Bioresour Technol; 2013 Oct; 146():355-362. PubMed ID: 23948273 [TBL] [Abstract][Full Text] [Related]
46. Physico-chemical characterization study of coffee husk for feasibility assessment in fluidized bed gasification process. Poyilil S; Palatel A; Chandrasekharan M Environ Sci Pollut Res Int; 2022 Jul; 29(34):51041-51053. PubMed ID: 34677764 [TBL] [Abstract][Full Text] [Related]
47. Insights into lignocellulosic waste fractionation for lignin nanospheres fabrication using acidic/alkaline deep eutectic solvents. Guo Y; Xu L; Shen F; Hu J; Huang M; He J; Zhang Y; Deng S; Li Q; Tian D Chemosphere; 2022 Jan; 286(Pt 2):131798. PubMed ID: 34365175 [TBL] [Abstract][Full Text] [Related]
48. Thermochemical conversion of cobalt-loaded spent coffee grounds for production of energy resource and environmental catalyst. Cho DW; Tsang DCW; Kim S; Kwon EE; Kwon G; Song H Bioresour Technol; 2018 Dec; 270():346-351. PubMed ID: 30243241 [TBL] [Abstract][Full Text] [Related]
49. A neoteric approach for the complete valorization of Typha angustifolia leaf biomass: A drive towards environmental sustainability. Jacob Rani BS; Venkatachalam S J Environ Manage; 2022 Sep; 318():115579. PubMed ID: 35763999 [TBL] [Abstract][Full Text] [Related]
50. Quality determination of nickel-loaded silica prepared from poaceous biomass. Ubukata M; Mitsuhashi S; Ueki A; Sano Y; Iwasa N; Fujita S; Arai M J Agric Food Chem; 2010 May; 58(10):6312-7. PubMed ID: 20423088 [TBL] [Abstract][Full Text] [Related]
51. Directional and integrated conversion of whole components in biomass for levulinates and phenolics with biphasic system. Feng J; Tong L; Ma C; Xu Y; Jiang J; Yang Z; Pan H Bioresour Technol; 2020 Nov; 315():123776. PubMed ID: 32683287 [TBL] [Abstract][Full Text] [Related]
52. Effect of anatomical fractionation on the enzymatic hydrolysis of acid and alkaline pretreated corn stover. Duguid KB; Montross MD; Radtke CW; Crofcheck CL; Wendt LM; Shearer SA Bioresour Technol; 2009 Nov; 100(21):5189-95. PubMed ID: 19560347 [TBL] [Abstract][Full Text] [Related]
54. Effective pretreatment of lignin-rich coconut wastes using a low-cost ionic liquid. Anuchi SO; Campbell KLS; Hallett JP Sci Rep; 2022 Apr; 12(1):6108. PubMed ID: 35414700 [TBL] [Abstract][Full Text] [Related]
55. Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin. Talebi Amiri M; Dick GR; Questell-Santiago YM; Luterbacher JS Nat Protoc; 2019 Mar; 14(3):921-954. PubMed ID: 30778206 [TBL] [Abstract][Full Text] [Related]
56. Robustness of two-step acid hydrolysis procedure for composition analysis of poplar. Bhagia S; Nunez A; Wyman CE; Kumar R Bioresour Technol; 2016 Sep; 216():1077-82. PubMed ID: 27282557 [TBL] [Abstract][Full Text] [Related]
57. Beneficiation of cactus fruit waste seeds for the production of cellulose nanostructures: Extraction and properties. Ait Benhamou A; Kassab Z; Boussetta A; Salim MH; Ablouh EH; Nadifiyine M; Qaiss AEK; Moubarik A; El Achaby M Int J Biol Macromol; 2022 Apr; 203():302-311. PubMed ID: 35104469 [TBL] [Abstract][Full Text] [Related]
58. Two-stage alkali-oxygen pretreatment capable of improving biomass saccharification for bioethanol production and enabling lignin valorization via adsorbents for heavy metal ions under the biorefinery concept. Song K; Chu Q; Hu J; Bu Q; Li F; Chen X; Shi A Bioresour Technol; 2019 Mar; 276():161-169. PubMed ID: 30623871 [TBL] [Abstract][Full Text] [Related]
59. An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Mohtar SS; Tengku Malim Busu TN; Md Noor AM; Shaari N; Mat H Carbohydr Polym; 2017 Jun; 166():291-299. PubMed ID: 28385235 [TBL] [Abstract][Full Text] [Related]