These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38053671)

  • 1. One-dimensional modeling of heterogeneous catalytic chemical looping steam methane reforming in an adiabatic packed bed reactor.
    Qayyum H; Cheema II; Abdullah M; Amin M; Khan IA; Lee EJ; Lee KH
    Front Chem; 2023; 11():1295455. PubMed ID: 38053671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical looping reforming of waste cooking oil in packed bed reactor.
    Pimenidou P; Rickett G; Dupont V; Twigg MV
    Bioresour Technol; 2010 Aug; 101(16):6389-97. PubMed ID: 20359888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor.
    Pimenidou P; Rickett G; Dupont V; Twigg MV
    Bioresour Technol; 2010 Dec; 101(23):9279-86. PubMed ID: 20655199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.
    Corbella BM; de Diego LF; García-Labiano F; Adánez J; Palaciost JM
    Environ Sci Technol; 2005 Aug; 39(15):5796-803. PubMed ID: 16124317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Process analysis of solar steam reforming of methane for producing low-carbon hydrogen.
    Shagdar E; Lougou BG; Shuai Y; Ganbold E; Chinonso OP; Tan H
    RSC Adv; 2020 Mar; 10(21):12582-12597. PubMed ID: 35497614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The evaluation of a methane autothermal chemical looping reforming experiment based on exergy analysis.
    Zhang F; Zhu L; Rao D
    RSC Adv; 2019 Jul; 9(38):22032-22044. PubMed ID: 35518859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects.
    Yusuf BO; Umar M; Kotob E; Abdulhakam A; Taialla OA; Awad MM; Hussain I; Alhooshani KR; Ganiyu SA
    Chem Asian J; 2023 Sep; ():e202300641. PubMed ID: 37740712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production by sorption-enhanced steam reforming of glycerol.
    Dou B; Dupont V; Rickett G; Blakeman N; Williams PT; Chen H; Ding Y; Ghadiri M
    Bioresour Technol; 2009 Jul; 100(14):3540-7. PubMed ID: 19318245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics for Steam and CO2 Reforming of Methane Over Ni/La/Al2O3 Catalyst.
    Park MH; Choi BK; Park YH; Moon DJ; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5255-8. PubMed ID: 26373118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The thermodynamic evaluation and process simulation of the chemical looping steam methane reforming of mixed iron oxides.
    Collins-Martinez VH; Cazares-Marroquin JF; Salinas-Gutierrez JM; Pantoja-Espinoza JC; Lopez-Ortiz A; Melendez-Zaragoza MJ
    RSC Adv; 2020 Dec; 11(2):684-699. PubMed ID: 35423708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen from ethanol reforming with aqueous fraction of pine pyrolysis oil with and without chemical looping.
    Zin RM; Ross AB; Jones JM; Dupont V
    Bioresour Technol; 2015 Jan; 176():257-66. PubMed ID: 25461011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors.
    Ghasem N
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.
    Castro-Dominguez B; Mardilovich IP; Ma LC; Ma R; Dixon AG; Kazantzis NK; Ma YH
    Membranes (Basel); 2016 Sep; 6(3):. PubMed ID: 27657143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of hydrogen-rich gas from methane by thermal plasma reform.
    Chun YN; Kim SC
    J Air Waste Manag Assoc; 2007 Dec; 57(12):1447-51. PubMed ID: 18200929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermochemical Performance Analysis of the Steam Reforming of Methane in a Fixed Bed Membrane Reformer: A Modelling and Simulation Study.
    de Medeiros JPF; da Fonseca Dias V; da Silva JM; da Silva JD
    Membranes (Basel); 2020 Dec; 11(1):. PubMed ID: 33374497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated CO
    Papalas T; Antzaras AN; Lemonidou AA
    Energy Fuels; 2024 Jul; 38(13):11966-11979. PubMed ID: 38984063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen Production by Three-Stage (i) Pyrolysis, (ii) Catalytic Steam Reforming, and (iii) Water Gas Shift Processing of Waste Plastic.
    Alshareef R; Nahil MA; Williams PT
    Energy Fuels; 2023 Mar; 37(5):3894-3907. PubMed ID: 36897817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model Development and Exergy Analysis of a Microreactor for the Steam Methane Reforming Process in a CFD Environment.
    Rahman ZU; Ahmad I; Kano M; Mustafa J
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Influence of Promoter on Ni(15)/La(5)/γ-Al2O3 Catalyst in CO2-Steam Reforming of Methane to Syngas at High Pressure.
    Ok HJ; Park MH; Moon DJ; Kim JH; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):449-53. PubMed ID: 26328379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.