BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38054293)

  • 1. There is a fundamental, unbridgeable gap between DNNs and the visual cortex.
    Gur M
    Behav Brain Sci; 2023 Dec; 46():e393. PubMed ID: 38054293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Neural Networks and Visuo-Semantic Models Explain Complementary Components of Human Ventral-Stream Representational Dynamics.
    Jozwik KM; Kietzmann TC; Cichy RM; Kriegeskorte N; Mur M
    J Neurosci; 2023 Mar; 43(10):1731-1741. PubMed ID: 36759190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How well do models of visual cortex generalize to out of distribution samples?
    Ren Y; Bashivan P
    PLoS Comput Biol; 2024 May; 20(5):e1011145. PubMed ID: 38820563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are Deep Neural Networks Adequate Behavioral Models of Human Visual Perception?
    Wichmann FA; Geirhos R
    Annu Rev Vis Sci; 2023 Sep; 9():501-524. PubMed ID: 37001509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images.
    Jang H; McCormack D; Tong F
    PLoS Biol; 2021 Dec; 19(12):e3001418. PubMed ID: 34882676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of deep neural network features by decodability from human brain activity.
    Horikawa T; Aoki SC; Tsukamoto M; Kamitani Y
    Sci Data; 2019 Feb; 6():190012. PubMed ID: 30747910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistics of Visual Responses to Image Object Stimuli from Primate AIT Neurons to DNN Neurons.
    Dong Q; Wang H; Hu Z
    Neural Comput; 2018 Feb; 30(2):447-476. PubMed ID: 29162010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The developmental trajectory of object recognition robustness: Children are like small adults but unlike big deep neural networks.
    Huber LS; Geirhos R; Wichmann FA
    J Vis; 2023 Jul; 23(7):4. PubMed ID: 37410494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Convolutional Neural Networks Outperform Feature-Based But Not Categorical Models in Explaining Object Similarity Judgments.
    Jozwik KM; Kriegeskorte N; Storrs KR; Mur M
    Front Psychol; 2017; 8():1726. PubMed ID: 29062291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative biology approach to DNN modeling of vision: A focus on differences, not similarities.
    Lonnqvist B; Bornet A; Doerig A; Herzog MH
    J Vis; 2021 Sep; 21(10):17. PubMed ID: 34551062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse Deep Neural Networks All Predict Human Inferior Temporal Cortex Well, After Training and Fitting.
    Storrs KR; Kietzmann TC; Walther A; Mehrer J; Kriegeskorte N
    J Cogn Neurosci; 2021 Sep; 33(10):2044-2064. PubMed ID: 34272948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Which deep learning model can best explain object representations of within-category exemplars?
    Lee D
    J Vis; 2021 Sep; 21(10):12. PubMed ID: 34520508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performing neural network models of visual cortex benefit from high latent dimensionality.
    Elmoznino E; Bonner MF
    PLoS Comput Biol; 2024 Jan; 20(1):e1011792. PubMed ID: 38198504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling functions of the visual cortex using task-specific deep neural networks.
    Dwivedi K; Bonner MF; Cichy RM; Roig G
    PLoS Comput Biol; 2021 Aug; 17(8):e1009267. PubMed ID: 34388161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motor decoding from the posterior parietal cortex using deep neural networks.
    Borra D; Filippini M; Ursino M; Fattori P; Magosso E
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37130514
    [No Abstract]   [Full Text] [Related]  

  • 16. Harmonizing the object recognition strategies of deep neural networks with humans.
    Fel T; Felipe I; Linsley D; Serre T
    Adv Neural Inf Process Syst; 2022 Dec; 35():9432-9446. PubMed ID: 37465369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing biological and artificial neural networks: challenges with opportunities for synergy?
    Barrett DG; Morcos AS; Macke JH
    Curr Opin Neurobiol; 2019 Apr; 55():55-64. PubMed ID: 30785004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics.
    He T; Kong R; Holmes AJ; Nguyen M; Sabuncu MR; Eickhoff SB; Bzdok D; Feng J; Yeo BTT
    Neuroimage; 2020 Feb; 206():116276. PubMed ID: 31610298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep problems with neural network models of human vision.
    Bowers JS; Malhotra G; Dujmović M; Llera Montero M; Tsvetkov C; Biscione V; Puebla G; Adolfi F; Hummel JE; Heaton RF; Evans BD; Mitchell J; Blything R
    Behav Brain Sci; 2022 Dec; 46():e385. PubMed ID: 36453586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symbolic Deep Networks: A Psychologically Inspired Lightweight and Efficient Approach to Deep Learning.
    Veksler VD; Hoffman BE; Buchler N
    Top Cogn Sci; 2022 Oct; 14(4):702-717. PubMed ID: 34609080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.