BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38054333)

  • 1. Fixing the problems of deep neural networks will require better training data and learning algorithms.
    Linsley D; Serre T
    Behav Brain Sci; 2023 Dec; 46():e400. PubMed ID: 38054333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are Deep Neural Networks Adequate Behavioral Models of Human Visual Perception?
    Wichmann FA; Geirhos R
    Annu Rev Vis Sci; 2023 Sep; 9():501-524. PubMed ID: 37001509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. For human-like models, train on human-like tasks.
    Hermann K; Nayebi A; van Steenkiste S; Jones M
    Behav Brain Sci; 2023 Dec; 46():e394. PubMed ID: 38054325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neither hype nor gloom do DNNs justice.
    Wichmann FA; Kornblith S; Geirhos R
    Behav Brain Sci; 2023 Dec; 46():e412. PubMed ID: 38054281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symbolic Deep Networks: A Psychologically Inspired Lightweight and Efficient Approach to Deep Learning.
    Veksler VD; Hoffman BE; Buchler N
    Top Cogn Sci; 2022 Oct; 14(4):702-717. PubMed ID: 34609080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep problems with neural network models of human vision.
    Bowers JS; Malhotra G; Dujmović M; Llera Montero M; Tsvetkov C; Biscione V; Puebla G; Adolfi F; Hummel JE; Heaton RF; Evans BD; Mitchell J; Blything R
    Behav Brain Sci; 2022 Dec; 46():e385. PubMed ID: 36453586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise-trained deep neural networks effectively predict human vision and its neural responses to challenging images.
    Jang H; McCormack D; Tong F
    PLoS Biol; 2021 Dec; 19(12):e3001418. PubMed ID: 34882676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Psychophysics may be the game-changer for deep neural networks (DNNs) to imitate the human vision.
    Chandran KS; Paul AM; Paul A; Ghosh K
    Behav Brain Sci; 2023 Dec; 46():e388. PubMed ID: 38054301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast deep neural correspondence for tracking and identifying neurons in
    Yu X; Creamer MS; Randi F; Sharma AK; Linderman SW; Leifer AM
    Elife; 2021 Jul; 10():. PubMed ID: 34259623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressing Deep Networks by Neuron Agglomerative Clustering.
    Wang LN; Liu W; Liu X; Zhong G; Roy PP; Dong J; Huang K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Neural Networks and Visuo-Semantic Models Explain Complementary Components of Human Ventral-Stream Representational Dynamics.
    Jozwik KM; Kietzmann TC; Cichy RM; Kriegeskorte N; Mur M
    J Neurosci; 2023 Mar; 43(10):1731-1741. PubMed ID: 36759190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ROOD-MRI: Benchmarking the robustness of deep learning segmentation models to out-of-distribution and corrupted data in MRI.
    Boone L; Biparva M; Mojiri Forooshani P; Ramirez J; Masellis M; Bartha R; Symons S; Strother S; Black SE; Heyn C; Martel AL; Swartz RH; Goubran M
    Neuroimage; 2023 Sep; 278():120289. PubMed ID: 37495197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Large Margin Learning.
    Guo Y; Zhang C
    IEEE Trans Pattern Anal Mach Intell; 2022 Oct; 44(10):7167-7174. PubMed ID: 34161238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective Cancer Subtype and Stage Prediction via Dropfeature-DNNs.
    Chen Z; Zhang W; Deng H; Zhang K
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):107-120. PubMed ID: 33577454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to handle noisy labels for robust learning from uncertainty.
    Ji D; Oh D; Hyun Y; Kwon OM; Park MJ
    Neural Netw; 2021 Nov; 143():209-217. PubMed ID: 34157645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering image contrast in object classification deep networks.
    Akbarinia A; Gil-Rodríguez R
    Vision Res; 2020 Aug; 173():61-76. PubMed ID: 32480109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jellyfish Search-Optimized Deep Learning for Compressive Strength Prediction in Images of Ready-Mixed Concrete.
    Chou JS; Tjandrakusuma S; Liu CY
    Comput Intell Neurosci; 2022; 2022():9541115. PubMed ID: 35958762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Learning Algorithm to Optimize Deep Neural Networks: Evolved Gradient Direction Optimizer (EVGO).
    Karabayir I; Akbilgic O; Tas N
    IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):685-694. PubMed ID: 32481228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformed ℓ
    Ma R; Miao J; Niu L; Zhang P
    Neural Netw; 2019 Nov; 119():286-298. PubMed ID: 31499353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epistatic Net allows the sparse spectral regularization of deep neural networks for inferring fitness functions.
    Aghazadeh A; Nisonoff H; Ocal O; Brookes DH; Huang Y; Koyluoglu OO; Listgarten J; Ramchandran K
    Nat Commun; 2021 Sep; 12(1):5225. PubMed ID: 34471113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.