BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 38054370)

  • 1. Presence of digestible starch impacts
    Klostermann CE; Endika MF; Kouzounis D; Buwalda PL; de Vos P; Zoetendal EG; Bitter JH; Schols HA
    Food Funct; 2024 Jan; 15(1):223-235. PubMed ID: 38054370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type of intrinsic resistant starch type 3 determines in vitro fermentation by pooled adult faecal inoculum.
    Klostermann CE; Endika MF; Ten Cate E; Buwalda PL; de Vos P; Bitter JH; Zoetendal EG; Schols HA
    Carbohydr Polym; 2023 Nov; 319():121187. PubMed ID: 37567720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model.
    Bednar GE; Patil AR; Murray SM; Grieshop CM; Merchen NR; Fahey GC
    J Nutr; 2001 Feb; 131(2):276-86. PubMed ID: 11160546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Starch digestibility: past, present, and future.
    Bello-Perez LA; Flores-Silva PC; Agama-Acevedo E; Tovar J
    J Sci Food Agric; 2020 Nov; 100(14):5009-5016. PubMed ID: 29427318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistant Starch is Actively Fermented by Infant Faecal Microbiota and Increases Microbial Diversity.
    Gopalsamy G; Mortimer E; Greenfield P; Bird AR; Young GP; Christophersen CT
    Nutrients; 2019 Jun; 11(6):. PubMed ID: 31208010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural rearrangement of native and processed pea starches following simulated digestion in vitro and fermentation characteristics of their resistant starch residues using human fecal inoculum.
    Cui W; Ma Z; Li X; Hu X
    Int J Biol Macromol; 2021 Mar; 172():490-502. PubMed ID: 33472022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human faecal microbiota develops the ability to degrade type 3 resistant starch during weaning.
    Scheiwiller J; Arrigoni E; Brouns F; Amadò R
    J Pediatr Gastroenterol Nutr; 2006 Nov; 43(5):584-91. PubMed ID: 17130732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles.
    Bui AT; Williams BA; Hoedt EC; Morrison M; Mikkelsen D; Gidley MJ
    Food Funct; 2020 Jun; 11(6):5635-5646. PubMed ID: 32537617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro fermentability of differently digested resistant starch preparations.
    Fässler C; Arrigoni E; Venema K; Brouns F; Amadò R
    Mol Nutr Food Res; 2006 Dec; 50(12):1220-8. PubMed ID: 17103375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum.
    Giuberti G; Gallo A; Moschini M; Masoero F
    Animal; 2013 Sep; 7(9):1446-53. PubMed ID: 23782951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food Starch Structure Impacts Gut Microbiome Composition.
    Warren FJ; Fukuma NM; Mikkelsen D; Flanagan BM; Williams BA; Lisle AT; Ó Cuív P; Morrison M; Gidley MJ
    mSphere; 2018; 3(3):. PubMed ID: 29769378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tannic acid delaying metabolism of resistant starch by gut microbiota during in vitro human fecal fermentation.
    Liu Z; Luo S; Liu C; Hu X
    Food Chem; 2024 May; 440():138261. PubMed ID: 38150905
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Teichmann J; Cockburn DW
    Front Microbiol; 2021; 12():640253. PubMed ID: 33995299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation characteristics of resistant starch from maize prepared by the enzymatic method in vitro.
    Zhang H; Xu X; Jin Z
    Int J Biol Macromol; 2012 Dec; 51(5):1185-8. PubMed ID: 22944007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New definition of resistant starch types from the gut microbiota perspectives - a review.
    Li C; Hu Y
    Crit Rev Food Sci Nutr; 2023; 63(23):6412-6422. PubMed ID: 35075962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats.
    Le Leu RK; Brown IL; Hu Y; Morita T; Esterman A; Young GP
    Carcinogenesis; 2007 Feb; 28(2):240-5. PubMed ID: 17166881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.
    Kaur A; Rose DJ; Rumpagaporn P; Patterson JA; Hamaker BR
    J Food Sci; 2011; 76(5):H137-42. PubMed ID: 22417432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pigs Ferment Enzymatically Digestible Starch when it Is Substituted for Resistant Starch.
    van Erp RJJ; de Vries S; van Kempen TATG; Gerrits WJJ
    J Nutr; 2019 Aug; 149(8):1346-1353. PubMed ID: 31162602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro fermentation of high-amylose cornstarch by a mixed population of colonic bacteria.
    Christl SU; Katzenmaier U; Hylla S; Kasper H; Scheppach W
    JPEN J Parenter Enteral Nutr; 1997; 21(5):290-5. PubMed ID: 9323692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentability of Novel Type-4 Resistant Starches in In Vitro System.
    Erickson JM; Carlson JL; Stewart ML; Slavin JL
    Foods; 2018 Feb; 7(2):. PubMed ID: 29389870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.