These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38054370)

  • 1. Presence of digestible starch impacts
    Klostermann CE; Endika MF; Kouzounis D; Buwalda PL; de Vos P; Zoetendal EG; Bitter JH; Schols HA
    Food Funct; 2024 Jan; 15(1):223-235. PubMed ID: 38054370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type of intrinsic resistant starch type 3 determines in vitro fermentation by pooled adult faecal inoculum.
    Klostermann CE; Endika MF; Ten Cate E; Buwalda PL; de Vos P; Bitter JH; Zoetendal EG; Schols HA
    Carbohydr Polym; 2023 Nov; 319():121187. PubMed ID: 37567720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Starch and fiber fractions in selected food and feed ingredients affect their small intestinal digestibility and fermentability and their large bowel fermentability in vitro in a canine model.
    Bednar GE; Patil AR; Murray SM; Grieshop CM; Merchen NR; Fahey GC
    J Nutr; 2001 Feb; 131(2):276-86. PubMed ID: 11160546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Starch digestibility: past, present, and future.
    Bello-Perez LA; Flores-Silva PC; Agama-Acevedo E; Tovar J
    J Sci Food Agric; 2020 Nov; 100(14):5009-5016. PubMed ID: 29427318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resistant Starch is Actively Fermented by Infant Faecal Microbiota and Increases Microbial Diversity.
    Gopalsamy G; Mortimer E; Greenfield P; Bird AR; Young GP; Christophersen CT
    Nutrients; 2019 Jun; 11(6):. PubMed ID: 31208010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural rearrangement of native and processed pea starches following simulated digestion in vitro and fermentation characteristics of their resistant starch residues using human fecal inoculum.
    Cui W; Ma Z; Li X; Hu X
    Int J Biol Macromol; 2021 Mar; 172():490-502. PubMed ID: 33472022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human faecal microbiota develops the ability to degrade type 3 resistant starch during weaning.
    Scheiwiller J; Arrigoni E; Brouns F; Amadò R
    J Pediatr Gastroenterol Nutr; 2006 Nov; 43(5):584-91. PubMed ID: 17130732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High amylose wheat starch structures display unique fermentability characteristics, microbial community shifts and enzyme degradation profiles.
    Bui AT; Williams BA; Hoedt EC; Morrison M; Mikkelsen D; Gidley MJ
    Food Funct; 2020 Jun; 11(6):5635-5646. PubMed ID: 32537617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro fermentability of differently digested resistant starch preparations.
    Fässler C; Arrigoni E; Venema K; Brouns F; Amadò R
    Mol Nutr Food Res; 2006 Dec; 50(12):1220-8. PubMed ID: 17103375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro production of short-chain fatty acids from resistant starch by pig faecal inoculum.
    Giuberti G; Gallo A; Moschini M; Masoero F
    Animal; 2013 Sep; 7(9):1446-53. PubMed ID: 23782951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food Starch Structure Impacts Gut Microbiome Composition.
    Warren FJ; Fukuma NM; Mikkelsen D; Flanagan BM; Williams BA; Lisle AT; Ó Cuív P; Morrison M; Gidley MJ
    mSphere; 2018; 3(3):. PubMed ID: 29769378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gut microbial features and dietary fiber intake predict gut microbiota response to resistant starch supplementation.
    Devarakonda SLS; Superdock DK; Ren J; Johnson LM; Loinard-González AAP; Poole AC
    Gut Microbes; 2024; 16(1):2367301. PubMed ID: 38913541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tannic acid delaying metabolism of resistant starch by gut microbiota during in vitro human fecal fermentation.
    Liu Z; Luo S; Liu C; Hu X
    Food Chem; 2024 May; 440():138261. PubMed ID: 38150905
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Teichmann J; Cockburn DW
    Front Microbiol; 2021; 12():640253. PubMed ID: 33995299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermentation characteristics of resistant starch from maize prepared by the enzymatic method in vitro.
    Zhang H; Xu X; Jin Z
    Int J Biol Macromol; 2012 Dec; 51(5):1185-8. PubMed ID: 22944007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New definition of resistant starch types from the gut microbiota perspectives - a review.
    Li C; Hu Y
    Crit Rev Food Sci Nutr; 2023; 63(23):6412-6422. PubMed ID: 35075962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats.
    Le Leu RK; Brown IL; Hu Y; Morita T; Esterman A; Young GP
    Carcinogenesis; 2007 Feb; 28(2):240-5. PubMed ID: 17166881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers.
    Kaur A; Rose DJ; Rumpagaporn P; Patterson JA; Hamaker BR
    J Food Sci; 2011; 76(5):H137-42. PubMed ID: 22417432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pigs Ferment Enzymatically Digestible Starch when it Is Substituted for Resistant Starch.
    van Erp RJJ; de Vries S; van Kempen TATG; Gerrits WJJ
    J Nutr; 2019 Aug; 149(8):1346-1353. PubMed ID: 31162602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro fermentation of high-amylose cornstarch by a mixed population of colonic bacteria.
    Christl SU; Katzenmaier U; Hylla S; Kasper H; Scheppach W
    JPEN J Parenter Enteral Nutr; 1997; 21(5):290-5. PubMed ID: 9323692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.