These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 38054740)

  • 21. Genomes of the "
    López-Pérez M; Haro-Moreno JM; Iranzo J; Rodriguez-Valera F
    mSystems; 2020 Dec; 5(6):. PubMed ID: 33323418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Streamlining and core genome conservation among highly divergent members of the SAR11 clade.
    Grote J; Thrash JC; Huggett MJ; Landry ZC; Carini P; Giovannoni SJ; Rappé MS
    mBio; 2012; 3(5):. PubMed ID: 22991429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selection Maintains Low Genomic GC Content in Marine SAR11 Lineages.
    Luo H; Thompson LR; Stingl U; Hughes AL
    Mol Biol Evol; 2015 Oct; 32(10):2738-48. PubMed ID: 26116859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing effective population sizes of dominant marine alphaproteobacteria lineages.
    Luo H; Swan BK; Stepanauskas R; Hughes AL; Moran MA
    Environ Microbiol Rep; 2014 Apr; 6(2):167-72. PubMed ID: 24596290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global biogeography of SAR11 marine bacteria.
    Brown MV; Lauro FM; DeMaere MZ; Muir L; Wilkins D; Thomas T; Riddle MJ; Fuhrman JA; Andrews-Pfannkoch C; Hoffman JM; McQuaid JB; Allen A; Rintoul SR; Cavicchioli R
    Mol Syst Biol; 2012 Jul; 8():595. PubMed ID: 22806143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution in action: habitat transition from sediment to the pelagial leads to genome streamlining in Methylophilaceae.
    Salcher MM; Schaefle D; Kaspar M; Neuenschwander SM; Ghai R
    ISME J; 2019 Nov; 13(11):2764-2777. PubMed ID: 31292537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SAR11 marine bacteria require exogenous reduced sulphur for growth.
    Tripp HJ; Kitner JB; Schwalbach MS; Dacey JW; Wilhelm LJ; Giovannoni SJ
    Nature; 2008 Apr; 452(7188):741-4. PubMed ID: 18337719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-cell enabled comparative genomics of a deep ocean SAR11 bathytype.
    Thrash JC; Temperton B; Swan BK; Landry ZC; Woyke T; DeLong EF; Stepanauskas R; Giovannoni SJ
    ISME J; 2014 Jul; 8(7):1440-51. PubMed ID: 24451205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria.
    Penn K; Jenkins C; Nett M; Udwary DW; Gontang EA; McGlinchey RP; Foster B; Lapidus A; Podell S; Allen EE; Moore BS; Jensen PR
    ISME J; 2009 Oct; 3(10):1193-203. PubMed ID: 19474814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative genomic analysis reveals the evolution and environmental adaptation strategies of vibrios.
    Lin H; Yu M; Wang X; Zhang XH
    BMC Genomics; 2018 Feb; 19(1):135. PubMed ID: 29433445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complete genome of streamlined marine actinobacterium Pontimonas salivibrio strain CL-TW6
    Cho BC; Hardies SC; Jang GI; Hwang CY
    BMC Genomics; 2018 Aug; 19(1):625. PubMed ID: 30134835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genomic differentiation among two strains of the PS1 clade isolated from geographically separated marine habitats.
    Jimenez-Infante F; Ngugi DK; Alam I; Rashid M; Baalawi W; Kamau AA; Bajic VB; Stingl U
    FEMS Microbiol Ecol; 2014 Jul; 89(1):181-97. PubMed ID: 24785133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Novel Freshwater to Marine Evolutionary Transition Revealed within
    Ramachandran A; McLatchie S; Walsh DA
    mBio; 2021 Jun; 12(3):e0130621. PubMed ID: 34154421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic islands and the ecology and evolution of Prochlorococcus.
    Coleman ML; Sullivan MB; Martiny AC; Steglich C; Barry K; Delong EF; Chisholm SW
    Science; 2006 Mar; 311(5768):1768-70. PubMed ID: 16556843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallel Evolution of Genome Streamlining and Cellular Bioenergetics across the Marine Radiation of a Bacterial Phylum.
    Getz EW; Tithi SS; Zhang L; Aylward FO
    mBio; 2018 Sep; 9(5):. PubMed ID: 30228235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Patterns and architecture of genomic islands in marine bacteria.
    Fernández-Gómez B; Fernàndez-Guerra A; Casamayor EO; González JM; Pedrós-Alió C; Acinas SG
    BMC Genomics; 2012 Jul; 13():347. PubMed ID: 22839777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GIPSy: Genomic island prediction software.
    Soares SC; Geyik H; Ramos RT; de Sá PH; Barbosa EG; Baumbach J; Figueiredo HC; Miyoshi A; Tauch A; Silva A; Azevedo V
    J Biotechnol; 2016 Aug; 232():2-11. PubMed ID: 26376473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A rare SAR11 fosmid clone confirming genetic variability in the 'Candidatus Pelagibacter ubique' genome.
    Gilbert JA; Mühling M; Joint I
    ISME J; 2008 Jul; 2(7):790-3. PubMed ID: 18496576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome streamlining in a cosmopolitan oceanic bacterium.
    Giovannoni SJ; Tripp HJ; Givan S; Podar M; Vergin KL; Baptista D; Bibbs L; Eads J; Richardson TH; Noordewier M; Rappé MS; Short JM; Carrington JC; Mathur EJ
    Science; 2005 Aug; 309(5738):1242-5. PubMed ID: 16109880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ecogenomics of the SAR11 clade.
    Haro-Moreno JM; Rodriguez-Valera F; Rosselli R; Martinez-Hernandez F; Roda-Garcia JJ; Gomez ML; Fornas O; Martinez-Garcia M; López-Pérez M
    Environ Microbiol; 2020 May; 22(5):1748-1763. PubMed ID: 31840364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.