These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 38054783)
1. Precursor Induced Assembly of Si Nanoparticles Encapsulated in Graphene/Carbon Matrices and the Influence of Al Li H; Wang Z; Dang L; Yu K; Yang R; Fu A; Liu X; Guo YG; Li H Small; 2024 May; 20(18):e2307722. PubMed ID: 38054783 [TBL] [Abstract][Full Text] [Related]
2. Reduced graphene oxide-encaged submicron-silicon anode interfacially stabilized by Al Tan X; Zhao Z; Na Z; Zhuo R; Zhou F; Wang D; Zhu L; Li Y; Hou S; Cai X RSC Adv; 2024 Apr; 14(16):11323-11333. PubMed ID: 38595724 [TBL] [Abstract][Full Text] [Related]
4. Scalable Synthesis of Pore-Rich Si/C@C Core-Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes. An W; He P; Che Z; Xiao C; Guo E; Pang C; He X; Ren J; Yuan G; Du N; Yang D; Peng DL; Zhang Q ACS Appl Mater Interfaces; 2022 Mar; 14(8):10308-10318. PubMed ID: 35175030 [TBL] [Abstract][Full Text] [Related]
5. Design of dual carbon encapsulated porous micron silicon composite with compact surface for enhanced reaction kinetics of lithium-ion battery anodes. Shi H; Wang C; Wang J; Wang D; Xiong Z; Wang Z; Wang Z; Bai Z; Gao Y; Yan X J Colloid Interface Sci; 2024 Aug; 668():459-470. PubMed ID: 38691956 [TBL] [Abstract][Full Text] [Related]
6. Graphene-doped silicon-carbon materials with multi-interface structures for lithium-ion battery anodes. Li X; Li K; Yuan M; Zhang J; Liu H; Li A; Chen X; Song H J Colloid Interface Sci; 2024 Aug; 667():470-477. PubMed ID: 38648703 [TBL] [Abstract][Full Text] [Related]
8. Tailoring the Size of Reduced Graphene Oxide Sheets to Fabricate Silicon Composite Anodes for Lithium-Ion Batteries. Liang YZ; Hsu TY; Su YS ACS Appl Mater Interfaces; 2024 Jun; 16(22):29226-29234. PubMed ID: 38776255 [TBL] [Abstract][Full Text] [Related]
9. Constructing three-dimensional N-doped carbon coating silicon/iron silicide nanoparticles cross-linked by carbon nanotubes as advanced anode materials for lithium-ion batteries. Li D; Zhang M; Zhang L; Xu X; Pan Q; Huang Y; Zheng F; Wang H; Li Q J Colloid Interface Sci; 2023 Jan; 629(Pt B):908-916. PubMed ID: 36208603 [TBL] [Abstract][Full Text] [Related]
10. Characteristics and electrochemical performances of silicon/carbon nanofiber/graphene composite films as anode materials for binder-free lithium-ion batteries. Cong R; Choi JY; Song JB; Jo M; Lee H; Lee CS Sci Rep; 2021 Jan; 11(1):1283. PubMed ID: 33446702 [TBL] [Abstract][Full Text] [Related]
11. Preparation and Electrochemical Characterization of Si@C Nanoparticles as an Anode Material for Lithium-Ion Batteries via Solvent-Assisted Wet Coating Process. Hwang J; Jung M; Park JJ; Kim EK; Lee G; Lee KJ; Choi JH; Song WJ Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630871 [TBL] [Abstract][Full Text] [Related]
12. Boron-doped three-dimensional porous carbon framework/carbon shell encapsulated silicon composites for high-performance lithium-ion battery anodes. Zhao J; Wang B; Zhan Z; Hu M; Cai F; Ćwierczek K; Yang K; Ren J; Guo Z; Wang Z J Colloid Interface Sci; 2024 Jun; 664():790-800. PubMed ID: 38492380 [TBL] [Abstract][Full Text] [Related]
13. A facile and low-cost Al Zhu H; Shiraz MHA; Liu L; Hu Y; Liu J Nanotechnology; 2021 Apr; 32(14):144001. PubMed ID: 33348333 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and Electrochemical Performance of Electrostatic Self-Assembled Nano-Silicon@N-Doped Reduced Graphene Oxide/Carbon Nanofibers Composite as Anode Material for Lithium-Ion Batteries. Cong R; Park HH; Jo M; Lee H; Lee CS Molecules; 2021 Aug; 26(16):. PubMed ID: 34443418 [TBL] [Abstract][Full Text] [Related]
15. Well-Dispersed Bi nanoparticles for promoting the lithium storage performance of Si Anode: Effect of the bridging Bi nanoparticles. Li D; Pan K; Li A; Jiang J; Wu Y; Li J; Zheng F; Xie F; Wang H; Pan Q J Colloid Interface Sci; 2024 Apr; 659():611-620. PubMed ID: 38198938 [TBL] [Abstract][Full Text] [Related]
16. Effect of Graphene on the Performance of Silicon-Carbon Composite Anode Materials for Lithium-Ion Batteries. Ni C; Xia C; Liu W; Xu W; Shan Z; Lei X; Qin H; Tao Z Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591635 [TBL] [Abstract][Full Text] [Related]
17. Growth of Vertical Graphene Sheets on Silicon Nanoparticles Well-Dispersed on Graphite Particles for High-Performance Lithium-Ion Battery Anode. Yu P; Li Z; Han M; Yu J Small; 2024 Apr; 20(17):e2307494. PubMed ID: 38041468 [TBL] [Abstract][Full Text] [Related]
18. Facile synthesis of core-shell structured Si@graphene balls as a high-performance anode for lithium-ion batteries. Jamaluddin A; Umesh B; Chen F; Chang JK; Su CY Nanoscale; 2020 May; 12(17):9616-9627. PubMed ID: 32315010 [TBL] [Abstract][Full Text] [Related]
19. Si/Ti2O3/Reduced Graphene Oxide Nanocomposite Anodes for Lithium-Ion Batteries with Highly Enhanced Cyclic Stability. Park AR; Son DY; Kim JS; Lee JY; Park NG; Park J; Lee JK; Yoo PJ ACS Appl Mater Interfaces; 2015 Aug; 7(33):18483-90. PubMed ID: 26244752 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and Characterization of Silicon/Reduced Graphene Oxide Composites as Anodes for Lithium Secondary Batteries. Lee SH; Kim YJ; Nam YS; Park SH; Lee H; Hyun Y; Lee CS J Nanosci Nanotechnol; 2018 Jul; 18(7):5026-5032. PubMed ID: 29442689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]