These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Multicomponent reaction for the synthesis of new 1,3,4-thiadiazole-thiazolidine-4-one molecular hybrids as promising antidiabetic agents through α-glucosidase and α-amylase inhibition. Gummidi L; Kerru N; Ebenezer O; Awolade P; Sanni O; Islam MS; Singh P Bioorg Chem; 2021 Oct; 115():105210. PubMed ID: 34332231 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors in vitro: Structure-activity relationship, molecular docking, and kinetic studies. Hameed S; Kanwal ; Seraj F; Rafique R; Chigurupati S; Wadood A; Rehman AU; Venugopal V; Salar U; Taha M; Khan KM Eur J Med Chem; 2019 Dec; 183():111677. PubMed ID: 31514061 [TBL] [Abstract][Full Text] [Related]
4. Design, Synthesis, α-Amylase/α-Glucosidase Inhibition Assay, Induced Fit Docking Study of New Hybrid Compounds Containing 4H-Pyrano[2,3-d]pyrimidine, 1H-1,2,3-Triazole and D-Glucose Components. Toan VN; Thanh ND; Huyen LT; Hanh NT; Hai DS; Anh HH; Giang NTK; Van HTK Chem Biodivers; 2022 Dec; 19(12):e202200680. PubMed ID: 36408921 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, anti-diabetic profiling and molecular docking studies of 2-(2-arylidenehydrazinyl)thiazol-4(5 Mehmood H; Haroon M; Akhtar T; Woodward S; Haq S; M Alshehri S Future Med Chem; 2024; 16(12):1255-1266. PubMed ID: 38989987 [TBL] [Abstract][Full Text] [Related]
6. Dexibuprofen amide derivatives as potential anticancer agents: synthesis, in silico docking, bioevaluation, and molecular dynamic simulation. Ashraf Z; Mahmood T; Hassan M; Afzal S; Rafique H; Afzal K; Latip J Drug Des Devel Ther; 2019; 13():1643-1657. PubMed ID: 31190743 [TBL] [Abstract][Full Text] [Related]
7. Design and synthesis of novel quinazolinone-1,2,3-triazole hybrids as new anti-diabetic agents: In vitro α-glucosidase inhibition, kinetic, and docking study. Saeedi M; Mohammadi-Khanaposhtani M; Pourrabia P; Razzaghi N; Ghadimi R; Imanparast S; Faramarzi MA; Bandarian F; Esfahani EN; Safavi M; Rastegar H; Larijani B; Mahdavi M; Akbarzadeh T Bioorg Chem; 2019 Mar; 83():161-169. PubMed ID: 30366316 [TBL] [Abstract][Full Text] [Related]
8. Novel cinnamic acid magnolol derivatives as potent α-glucosidase and α-amylase inhibitors: Synthesis, in vitro and in silico studies. Hu CM; Wang WJ; Ye YN; Kang Y; Lin J; Wu PP; Li DL; Bai LP; Xu XT; Li BQ; Zhang K Bioorg Chem; 2021 Nov; 116():105291. PubMed ID: 34438122 [TBL] [Abstract][Full Text] [Related]
9. Design and synthesis of pyrrolo[2,3-d]pyrimidine linked hybrids as α-amylase inhibitors: molecular docking, MD simulation, ADMET and antidiabetic screening. Zala AR; Tiwari R; Naik HN; Ahmad I; Patel H; Jauhari S; Kumari P Mol Divers; 2024 Jun; 28(3):1681-1695. PubMed ID: 37344700 [TBL] [Abstract][Full Text] [Related]
10. Design, synthesis, molecular modelling, ADME prediction and anti-hyperglycemic evaluation of new pyrazole-triazolopyrimidine hybrids as potent α-glucosidase inhibitors. Pogaku V; Gangarapu K; Basavoju S; Tatapudi KK; Katragadda SB Bioorg Chem; 2019 Dec; 93():103307. PubMed ID: 31585262 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, evaluation and docking of novel pyrazolo pyrimidines as potent p38α MAP kinase inhibitors with improved anti-inflammatory, ulcerogenic and TNF-α inhibitory properties. Somakala K; Tariq S; Amir M Bioorg Chem; 2019 Jun; 87():550-559. PubMed ID: 30928877 [TBL] [Abstract][Full Text] [Related]