These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 38055122)
1. Using machine learning-based radiomics to differentiate between glioma and solitary brain metastasis from lung cancer and its subtypes. Zhu FY; Sun YF; Yin XP; Zhang Y; Xing LH; Ma ZP; Xue LY; Wang JN Discov Oncol; 2023 Dec; 14(1):224. PubMed ID: 38055122 [TBL] [Abstract][Full Text] [Related]
2. [A multi-modal feature fusion classification model based on distance matching and discriminative representation learning for differentiation of high-grade glioma from solitary brain metastasis]. Zhang Z; Xie J; Zhong W; Liang F; Yang R; Zhen X Nan Fang Yi Ke Da Xue Xue Bao; 2024 Jan; 44(1):138-145. PubMed ID: 38293985 [TBL] [Abstract][Full Text] [Related]
3. Predicting Histopathological Grading of Adult Gliomas Based On Preoperative Conventional Multimodal MRI Radiomics: A Machine Learning Model. Du P; Liu X; Wu X; Chen J; Cao A; Geng D Brain Sci; 2023 Jun; 13(6):. PubMed ID: 37371390 [TBL] [Abstract][Full Text] [Related]
4. Machine learning for differentiation of lipid-poor adrenal adenoma and subclinical pheochromocytoma based on multiphase CT imaging radiomics. Xiao DX; Zhong JP; Peng JD; Fan CG; Wang XC; Wen XL; Liao WW; Wang J; Yin XF BMC Med Imaging; 2023 Oct; 23(1):159. PubMed ID: 37845636 [TBL] [Abstract][Full Text] [Related]
5. Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics. Mao B; Ma J; Duan S; Xia Y; Tao Y; Zhang L Eur Radiol; 2021 Jul; 31(7):4576-4586. PubMed ID: 33447862 [TBL] [Abstract][Full Text] [Related]
6. [Evaluation of extravascular lung water index in critically ill patients based on lung ultrasound radiomics analysis combined with machine learning]. Meng W; Zhang C; Hu J; Tang Z Zhonghua Wei Zhong Bing Ji Jiu Yi Xue; 2023 Oct; 35(10):1074-1079. PubMed ID: 37873713 [TBL] [Abstract][Full Text] [Related]
7. Predicting the risk stratification of gastrointestinal stromal tumors using machine learning-based ultrasound radiomics. Zhuo M; Tang Y; Guo J; Qian Q; Xue E; Chen Z J Med Ultrason (2001); 2024 Jan; 51(1):71-82. PubMed ID: 37798591 [TBL] [Abstract][Full Text] [Related]
8. Establishment of a Prediction Model Based on Preoperative MRI Radiomics for Diffuse Astrocytic Glioma, IDH-Wildtype, with Molecular Features of Glioblastoma. Du P; Wu X; Liu X; Chen J; Cao A; Geng D Cancers (Basel); 2023 Oct; 15(20):. PubMed ID: 37894461 [TBL] [Abstract][Full Text] [Related]
9. [High-throughput texture analysis in the distinction of single metastatic brain tumors from high-grade gliomas]. Yin HL; Li DB; Jiang Y; Li SH; Chen Y; Lin GW Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):841-846. PubMed ID: 30481936 [No Abstract] [Full Text] [Related]
10. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
11. MR-Based Radiomics Predicts CDK6 Expression and Prognostic Value in High-grade Glioma. Sun C; Jiang C; Wang X; Ma S; Zhang D; Jia W Acad Radiol; 2024 Dec; 31(12):5141-5153. PubMed ID: 38964985 [TBL] [Abstract][Full Text] [Related]
12. MRI-based radiomics of rectal cancer: preoperative assessment of the pathological features. Ma X; Shen F; Jia Y; Xia Y; Li Q; Lu J BMC Med Imaging; 2019 Nov; 19(1):86. PubMed ID: 31747902 [TBL] [Abstract][Full Text] [Related]
14. Non-Contrasted CT Radiomics for SAH Prognosis Prediction. Shan D; Wang J; Qi P; Lu J; Wang D Bioengineering (Basel); 2023 Aug; 10(8):. PubMed ID: 37627852 [TBL] [Abstract][Full Text] [Related]
15. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging. Hashido T; Saito S; Ishida T J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479 [TBL] [Abstract][Full Text] [Related]
16. Multiparametric MRI radiomics for the differentiation of brain glial cell hyperplasia from low-grade glioma. Gu S; Qian J; Yang L; Sun Z; Hu C; Wang X; Hu S; Xie Y BMC Med Imaging; 2023 Aug; 23(1):116. PubMed ID: 37653513 [TBL] [Abstract][Full Text] [Related]
17. Is radiomics a useful addition to magnetic resonance imaging in the preoperative classification of PitNETs? Sathya A ; Goyal-Honavar A; Chacko AG; Jasper A; Chacko G; Devakumar D; Seelam JA; Sasidharan BK; Pavamani SP; Thomas HMT Acta Neurochir (Wien); 2024 Feb; 166(1):91. PubMed ID: 38376544 [TBL] [Abstract][Full Text] [Related]
18. Use of Radiomics Models in Preoperative Grading of Cerebral Gliomas and Comparison with Three-dimensional Arterial Spin Labelling. Zhu FY; Sun YF; Yin XP; Wang TD; Zhang Y; Xing LH; Xue LY; Wang JN Clin Oncol (R Coll Radiol); 2023 Nov; 35(11):726-735. PubMed ID: 37598093 [TBL] [Abstract][Full Text] [Related]
19. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. Artzi M; Bressler I; Ben Bashat D J Magn Reson Imaging; 2019 Aug; 50(2):519-528. PubMed ID: 30635952 [TBL] [Abstract][Full Text] [Related]
20. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]