BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 38055834)

  • 1. Exonic splicing code and coordination of divalent metals in proteins.
    Bakhtiar D; Vondraskova K; Pengelly RJ; Chivers M; Kralovicova J; Vorechovsky I
    Nucleic Acids Res; 2024 Feb; 52(3):1090-1106. PubMed ID: 38055834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-binding proteins and exonic splicing enhancers and silencers.
    Bakhtiar D; Vorechovsky I
    Metallomics; 2024 May; 16(5):. PubMed ID: 38692844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exonic splicing code and protein binding sites for calcium.
    Pengelly RJ; Bakhtiar D; Borovská I; Královičová J; Vořechovský I
    Nucleic Acids Res; 2022 Jun; 50(10):5493-5512. PubMed ID: 35474482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Restriction of an intron size en route to endothermy.
    Královičová J; Borovská I; Pengelly R; Lee E; Abaffy P; Šindelka R; Grutzner F; Vořechovský I
    Nucleic Acids Res; 2021 Mar; 49(5):2460-2487. PubMed ID: 33550394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic analysis of intronic sequences downstream of 5' splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation.
    Aznarez I; Barash Y; Shai O; He D; Zielenski J; Tsui LC; Parkinson J; Frey BJ; Rommens JM; Blencowe BJ
    Genome Res; 2008 Aug; 18(8):1247-58. PubMed ID: 18456862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene.
    Romano M; Marcucci R; Baralle FE
    Nucleic Acids Res; 2001 Feb; 29(4):886-94. PubMed ID: 11160920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of splicing errors and mutations in human transcripts.
    Kurmangaliyev YZ; Gelfand MS
    BMC Genomics; 2008 Jan; 9():13. PubMed ID: 18194514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.
    Královicová J; Vorechovsky I
    Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between coding and exonic splicing regulatory sequences.
    Fontrodona N; Aubé F; Claude JB; Polvèche H; Lemaire S; Tranchevent LC; Modolo L; Mortreux F; Bourgeois CF; Auboeuf D
    Genome Res; 2019 May; 29(5):711-722. PubMed ID: 30962178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for deep phylogenetic conservation of exonic splice-related constraints: splice-related skews at exonic ends in the brown alga Ectocarpus are common and resemble those seen in humans.
    Wu X; Tronholm A; Cáceres EF; Tovar-Corona JM; Chen L; Urrutia AO; Hurst LD
    Genome Biol Evol; 2013; 5(9):1731-45. PubMed ID: 23902749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of exonic splicing regulation on synonymous codon usage in alternatively spliced exons of Dscam.
    Takahashi A
    BMC Evol Biol; 2009 Aug; 9():214. PubMed ID: 19709440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons.
    Gelfman S; Burstein D; Penn O; Savchenko A; Amit M; Schwartz S; Pupko T; Ast G
    Genome Res; 2012 Jan; 22(1):35-50. PubMed ID: 21974994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes.
    Wang J; Smith PJ; Krainer AR; Zhang MQ
    Nucleic Acids Res; 2005; 33(16):5053-62. PubMed ID: 16147989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse.
    Khodor YL; Menet JS; Tolan M; Rosbash M
    RNA; 2012 Dec; 18(12):2174-86. PubMed ID: 23097425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of the Usage of Splice-Associated cis-Motifs Predict the Distribution of Human Pathogenic SNPs.
    Wu X; Hurst LD
    Mol Biol Evol; 2016 Feb; 33(2):518-29. PubMed ID: 26545919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vulnerable exons, like ACADM exon 5, are highly dependent on maintaining a correct balance between splicing enhancers and silencers.
    Holm LL; Doktor TK; Hansen MB; Petersen USS; Andresen BS
    Hum Mutat; 2022 Feb; 43(2):253-265. PubMed ID: 34923709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
    Fox-Walsh KL; Dou Y; Lam BJ; Hung SP; Baldi PF; Hertel KJ
    Proc Natl Acad Sci U S A; 2005 Nov; 102(45):16176-81. PubMed ID: 16260721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finding exonic islands in a sea of non-coding sequence: splicing related constraints on protein composition and evolution are common in intron-rich genomes.
    Warnecke T; Parmley JL; Hurst LD
    Genome Biol; 2008; 9(2):R29. PubMed ID: 18257921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.