BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 38055902)

  • 1. Resonance Enhancement of Vibrational Polariton Chemistry Obtained from the Mixed Quantum-Classical Dynamics Simulations.
    Hu D; Ying W; Huo P
    J Phys Chem Lett; 2023 Dec; 14(49):11208-11216. PubMed ID: 38055902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance theory and quantum dynamics simulations of vibrational polariton chemistry.
    Ying W; Huo P
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear gradient expressions for molecular cavity quantum electrodynamics simulations using mixed quantum-classical methods.
    Zhou W; Hu D; Mandal A; Huo P
    J Chem Phys; 2022 Sep; 157(10):104118. PubMed ID: 36109223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab Initio Molecular Cavity Quantum Electrodynamics Simulations Using Machine Learning Models.
    Hu D; Huo P
    J Chem Theory Comput; 2023 Apr; 19(8):2353-2368. PubMed ID: 37000936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavity frequency-dependent theory for vibrational polariton chemistry.
    Li X; Mandal A; Huo P
    Nat Commun; 2021 Feb; 12(1):1315. PubMed ID: 33637720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dynamical effects of vibrational strong coupling in chemical reactivity.
    Lindoy LP; Mandal A; Reichman DR
    Nat Commun; 2023 May; 14(1):2733. PubMed ID: 37173299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics.
    Mandal A; Taylor MAD; Weight BM; Koessler ER; Li X; Huo P
    Chem Rev; 2023 Aug; 123(16):9786-9879. PubMed ID: 37552606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling.
    Li TE; Subotnik JE; Nitzan A
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18324-18331. PubMed ID: 32680967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity molecular dynamics simulations of vibrational polariton-enhanced molecular nonlinear absorption.
    Li TE; Nitzan A; Subotnik JE
    J Chem Phys; 2021 Mar; 154(9):094124. PubMed ID: 33685184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed Quantum-Classical Liouville Equation Treatment of Electronic Spectroscopy of Condensed Systems: Harmonic and Anharmonic Electron-Phonon Coupling.
    Toutounji M
    J Chem Theory Comput; 2023 Jul; 19(13):3779-3797. PubMed ID: 37365487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling.
    Yu Q; Bowman JM
    Nat Commun; 2023 Jun; 14(1):3527. PubMed ID: 37316497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collective Vibrational Strong Coupling Effects on Molecular Vibrational Relaxation and Energy Transfer: Numerical Insights via Cavity Molecular Dynamics Simulations*.
    Li TE; Nitzan A; Subotnik JE
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15533-15540. PubMed ID: 33957010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Vibrational Polariton Dynamics: What Can Polaritons Do?
    Xiong W
    Acc Chem Res; 2023 Apr; 56(7):776-786. PubMed ID: 36930582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Quantum is the Resonance Behavior in Vibrational Polariton Chemistry?
    Fiechter MR; Runeson JE; Lawrence JE; Richardson JO
    J Phys Chem Lett; 2023 Sep; 14(36):8261-8267. PubMed ID: 37676159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Going beyond the frozen core approximation: development of coordinate-dependent pseudopotentials and application to Na2(+).
    Kahros A; Schwartz BJ
    J Chem Phys; 2013 Feb; 138(5):054110. PubMed ID: 23406101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polariton relaxation under vibrational strong coupling: Comparing cavity molecular dynamics simulations against Fermi's golden rule rate.
    Li TE; Nitzan A; Subotnik JE
    J Chem Phys; 2022 Apr; 156(13):134106. PubMed ID: 35395873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the role of decoherence in condensed-phase nonadiabatic dynamics: a comparison of different mixed quantum/classical simulation algorithms for the excited hydrated electron.
    Larsen RE; Bedard-Hearn MJ; Schwartz BJ
    J Phys Chem B; 2006 Oct; 110(40):20055-66. PubMed ID: 17020394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized Resonance Energy Transfer Theory: Applications to Vibrational Energy Flow in Optical Cavities.
    Cao J
    J Phys Chem Lett; 2022 Dec; 13(47):10943-10951. PubMed ID: 36408925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics.
    Crespo-Otero R; Barbatti M
    Chem Rev; 2018 Aug; 118(15):7026-7068. PubMed ID: 29767966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.