These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 38056047)
1. Modulation of transport at the interface in the microporous layer for high power density proton exchange membrane fuel cells. Wu N; Liu Y; Zhang S; Hou D; Yang R; Qi Y; Wang L J Colloid Interface Sci; 2024 Mar; 657():428-437. PubMed ID: 38056047 [TBL] [Abstract][Full Text] [Related]
2. Slip-Enhanced Transport by Graphene in the Microporous Layer for High Power Density Proton-Exchange Membrane Fuel Cells. Liu Y; Wu N; Zeng H; Hou D; Zhang S; Qi Y; Yang R; Wang L J Phys Chem Lett; 2023 Sep; 14(35):7883-7891. PubMed ID: 37639374 [TBL] [Abstract][Full Text] [Related]
3. Electrochemically Produced Graphene for Microporous Layers in Fuel Cells. Najafabadi AT; Leeuwner MJ; Wilkinson DP; Gyenge EL ChemSusChem; 2016 Jul; 9(13):1689-97. PubMed ID: 27254459 [TBL] [Abstract][Full Text] [Related]
5. Performance Enhancement of Proton Exchange Membrane Fuel Cell through Carbon Nanofibers Grown In Situ on Carbon Paper. Liu C; Li S Molecules; 2023 Mar; 28(6):. PubMed ID: 36985780 [TBL] [Abstract][Full Text] [Related]
6. Microporous Layer Containing CeO Chen L; Lin R; Yu X; Zheng T; Dong M; Lou M; Ma Y; Hao Z ACS Appl Mater Interfaces; 2021 May; 13(17):20201-20212. PubMed ID: 33896170 [TBL] [Abstract][Full Text] [Related]
7. Pore-Scale Modeling of Microporous Layer for Proton Exchange Membrane Fuel Cell: Effective Transport Properties. Zhang H; Shao X; Zhan Z; Sarker M; Sui PC; Chuang PA; Pan M Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837722 [TBL] [Abstract][Full Text] [Related]
8. Rational Design of Multimodal Porous Carbon for the Interfacial Microporous Layer of Fuel Cell Oxygen Electrodes. Nouri-Khorasani A; Bonakdarpour A; Fang B; Wilkinson DP ACS Appl Mater Interfaces; 2022 Feb; 14(7):9084-9096. PubMed ID: 35156371 [TBL] [Abstract][Full Text] [Related]
9. A Recyclable Standalone Microporous Layer with Interpenetrating Network for Sustainable Fuel Cells. Wen Q; Li Y; He C; Shen M; Ning F; Dan X; Liu Y; Xu P; Zou S; Chai Z; Li W; He L; Tian B; Zhou X Adv Mater; 2023 Sep; 35(36):e2301504. PubMed ID: 37086392 [TBL] [Abstract][Full Text] [Related]
10. Two-Stage Microporous Layers with Gradient Pore Size Structure for Improving the Performance of Proton Exchange Membrane Fuel Cells. Zhao C; Zhang H; Huang Z; Zhao M; Chen H; Lin G Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376385 [TBL] [Abstract][Full Text] [Related]
11. On the water transport mechanism through the microporous layers of Chen YC; Dörenkamp T; Csoklich C; Berger A; Marone F; Eller J; Schmidt TJ; Büchi FN Energy Adv; 2023 Sep; 2(9):1447-1463. PubMed ID: 38014390 [TBL] [Abstract][Full Text] [Related]
12. In Situ-Grown Ultrathin Catalyst Layers for Improving both Proton Exchange Membrane Fuel Cell and Anion Exchange Membrane Fuel Cell Performances. Xin D; Liu X; Chen B; Jin X; Hao J; Wang Y; Hu R; Fu J; Wang S; Zhu W; Zhuang Z ACS Appl Mater Interfaces; 2024 Aug; 16(32):42363-42371. PubMed ID: 39078706 [TBL] [Abstract][Full Text] [Related]
13. Impact of Microporous Layer on Heat and Mass Transfer in a Single Cell of Polymer Electrolyte Fuel Cell Using a Thin Polymer Electrolyte Membrane and a Thin Gas Diffusion Layer Operated at a High-Temperature Range. Nishimura A; Okado T; Kojima Y; Hu E ACS Omega; 2021 Jun; 6(22):14575-14584. PubMed ID: 34124481 [TBL] [Abstract][Full Text] [Related]
14. A Super Uniform Hydrophobic Gas Diffusion Layer for a Proton Exchange Membrane Fuel Cell. Xiao Y; Li X; Wang Q; Yang Y; Li B; Ming P; Zhang C; Dai H ACS Appl Mater Interfaces; 2023 Aug; 15(31):38090-38099. PubMed ID: 37505078 [TBL] [Abstract][Full Text] [Related]
15. Microporous Layers with Different Decorative Patterns for Polymer Electrolyte Membrane Fuel Cells. Chen L; Lin R; Chen X; Hao Z; Diao X; Froning D; Tang S ACS Appl Mater Interfaces; 2020 May; 12(21):24048-24058. PubMed ID: 32374155 [TBL] [Abstract][Full Text] [Related]
16. Applicability of Single-Layer Graphene as a Hydrogen-Blocking Interlayer in Low-Temperature PEMFCs. Komma M; Freiberg ATS; Abbas D; Arslan F; Milosevic M; Cherevko S; Thiele S; Böhm T ACS Appl Mater Interfaces; 2024 Apr; 16(18):23220-32. PubMed ID: 38676629 [TBL] [Abstract][Full Text] [Related]
17. Highly Ordered Nanoporous Carbon Scaffold with Controllable Wettability as the Microporous Layer for Fuel Cells. Islam MN; Shrivastava U; Atwa M; Li X; Birss V; Karan K ACS Appl Mater Interfaces; 2020 Sep; 12(35):39215-39226. PubMed ID: 32805948 [TBL] [Abstract][Full Text] [Related]
18. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres. Zamora H; Plaza J; Cañizares P; Lobato J; Rodrigo MA ChemSusChem; 2016 May; 9(10):1187-93. PubMed ID: 27076055 [TBL] [Abstract][Full Text] [Related]
19. Analyses of interfacial resistances in a membrane-electrode assembly for a proton exchange membrane fuel cell using symmetrical impedance spectroscopy. Seo SJ; Woo JJ; Yun SH; Lee HJ; Park JS; Xu T; Yang TH; Lee J; Moon SH Phys Chem Chem Phys; 2010 Dec; 12(46):15291-300. PubMed ID: 20953477 [TBL] [Abstract][Full Text] [Related]
20. Elucidating the Mass Transportation Behavior of Gas Diffusion Layers via a H Wang M; Zhao W; Kong S; Chen J; Li Y; Liu M; Wu M; Wang G Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]