BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38056203)

  • 1. Genetic and process engineering for polyhydroxyalkanoate production from pre- and post-consumer food waste.
    Chacón M; Wongsirichot P; Winterburn J; Dixon N
    Curr Opin Biotechnol; 2024 Feb; 85():103024. PubMed ID: 38056203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Food waste conversion to microbial polyhydroxyalkanoates.
    Nielsen C; Rahman A; Rehman AU; Walsh MK; Miller CD
    Microb Biotechnol; 2017 Nov; 10(6):1338-1352. PubMed ID: 28736901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis.
    Ene N; Savoiu VG; Spiridon M; Paraschiv CI; Vamanu E
    Curr Pharm Des; 2023; 29(39):3089-3102. PubMed ID: 38099526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of polyhydroxyalkanoates using dairy processing waste - A review.
    Dutt Tripathi A; Paul V; Agarwal A; Sharma R; Hashempour-Baltork F; Rashidi L; Khosravi Darani K
    Bioresour Technol; 2021 Apr; 326():124735. PubMed ID: 33508643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pure cultures for synthetic culture development: Next level municipal waste treatment for polyhydroxyalkanoates production.
    Khatami K; Perez-Zabaleta M; Cetecioglu Z
    J Environ Manage; 2022 Mar; 305():114337. PubMed ID: 34972045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in Polyhydroxyalkanoates (PHAs) production - A review.
    Sabapathy PC; Devaraj S; Meixner K; Anburajan P; Kathirvel P; Ravikumar Y; Zabed HM; Qi X
    Bioresour Technol; 2020 Jun; 306():123132. PubMed ID: 32220472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives.
    De Donno Novelli L; Moreno Sayavedra S; Rene ER
    Bioresour Technol; 2021 Jul; 331():124985. PubMed ID: 33819906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on production of polyhydroxyalkanoate (PHA) biopolyesters by thermophilic microbes using waste feedstocks.
    Chavan S; Yadav B; Tyagi RD; Drogui P
    Bioresour Technol; 2021 Dec; 341():125900. PubMed ID: 34523565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of polyhydroxyalkanoates (PHAs) by
    Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA
    Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of production of polyhydroxyalkanoates from food waste fermentation with Rhodopseudomonas palustris.
    Dan T; Jing H; Shen T; Zhu J; Liu Y
    Bioresour Technol; 2023 Oct; 385():129165. PubMed ID: 37182681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of polyhydroxyalkanoates (PHAs) from wastewater: A review.
    Mannina G; Presti D; Montiel-Jarillo G; Carrera J; Suárez-Ojeda ME
    Bioresour Technol; 2020 Feb; 297():122478. PubMed ID: 31810735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of biopolymers from food waste: Constrains and perspectives.
    Gautam K; Vishvakarma R; Sharma P; Singh A; Kumar Gaur V; Varjani S; Kumar Srivastava J
    Bioresour Technol; 2022 Oct; 361():127650. PubMed ID: 35907601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas.
    Moretto G; Russo I; Bolzonella D; Pavan P; Majone M; Valentino F
    Water Res; 2020 Mar; 170():115371. PubMed ID: 31835138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waste to bioplastics: How close are we to sustainable polyhydroxyalkanoates production?
    Khatami K; Perez-Zabaleta M; Owusu-Agyeman I; Cetecioglu Z
    Waste Manag; 2021 Jan; 119():374-388. PubMed ID: 33139190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-centric metagenomics provides new insights into metabolic pathways of polyhydroxyalkanoates biosynthesis and functional microorganisms subsisting on municipal organic wastes.
    Li RH; Huang J; Liu CX; Yu K; Guo F; Li Y; Chen ZH; Wang X; Zhao RX; Zhang JY; Liang JJ; Li Y; Lin L; Sun L; Li XY; Li B
    Water Res; 2023 Oct; 244():120512. PubMed ID: 37633209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review.
    Lhamo P; Behera SK; Mahanty B
    Biotechnol J; 2021 Sep; 16(9):e2100136. PubMed ID: 34132046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum.
    Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A
    Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational engineering of natural polyhydroxyalkanoates producing microorganisms for improved synthesis and recovery.
    Borrero-de Acuña JM; Poblete-Castro I
    Microb Biotechnol; 2023 Feb; 16(2):262-285. PubMed ID: 35792877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and Quantification of Polycyclic Aromatic Hydrocarbons in Polyhydroxyalkanoates Produced from Mixed Microbial Cultures and Municipal Organic Wastes at Pilot Scale.
    Cavaliere C; Capriotti AL; Cerrato A; Lorini L; Montone CM; Valentino F; Laganà A; Majone M
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33494198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances on food waste pretreatment technology via microalgae for source of polyhydroxyalkanoates.
    Chong JWR; Yew GY; Khoo KS; Ho SH; Show PL
    J Environ Manage; 2021 Sep; 293():112782. PubMed ID: 34052610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.