BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38056203)

  • 21. Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates.
    Shah S; Kumar A
    Braz J Microbiol; 2021 Jun; 52(2):715-726. PubMed ID: 33590449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements.
    Anjum A; Zuber M; Zia KM; Noreen A; Anjum MN; Tabasum S
    Int J Biol Macromol; 2016 Aug; 89():161-74. PubMed ID: 27126172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Valorization of organic wastes using bioreactors for polyhydroxyalkanoate production: Recent advancement, sustainable approaches, challenges, and future perspectives.
    Goswami L; Kushwaha A; Napathorn SC; Kim BS
    Int J Biol Macromol; 2023 Aug; 247():125743. PubMed ID: 37423435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.
    Urtuvia V; Villegas P; González M; Seeger M
    Int J Biol Macromol; 2014 Sep; 70():208-13. PubMed ID: 24974981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scaling-up microbial community-based polyhydroxyalkanoate production: status and challenges.
    Estévez-Alonso Á; Pei R; van Loosdrecht MCM; Kleerebezem R; Werker A
    Bioresour Technol; 2021 May; 327():124790. PubMed ID: 33582521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications.
    Behera S; Priyadarshanee M; Vandana ; Das S
    Chemosphere; 2022 May; 294():133723. PubMed ID: 35085614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: A review.
    Yoon J; Oh MK
    Bioresour Technol; 2022 Jan; 344(Pt B):126307. PubMed ID: 34767907
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes.
    Pagliano G; Ventorino V; Panico A; Pepe O
    Biotechnol Biofuels; 2017; 10():113. PubMed ID: 28469708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production.
    Sindhu R; Madhavan A; Arun KB; Pugazhendhi A; Reshmy R; Awasthi MK; Sirohi R; Tarafdar A; Pandey A; Binod P
    Bioresour Technol; 2021 May; 327():124791. PubMed ID: 33579565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of polyhydroxyalkanoate (PHA) copolymer from food waste using mixed culture for carboxylate production and Pseudomonas putida for PHA synthesis.
    Chandra R; Thakor A; Mekonnen TH; Charles TC; Lee HS
    J Environ Manage; 2023 Jun; 336():117650. PubMed ID: 36878060
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of feedstock source on the development of polyhydroxyalkanoates-producing mixed microbial cultures in continuously stirred tank reactors.
    Clagnan E; Adani F
    N Biotechnol; 2023 Sep; 76():90-97. PubMed ID: 37220837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of polyhydroxyalkanoates using agro and industrial waste as a substrate - a review.
    Kanzariya R; Gautam A; Parikh S; Shah M; Gautam S
    Biotechnol Genet Eng Rev; 2023 Jan; ():1-40. PubMed ID: 36641590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of polyhydroxyalkanoates production from waste feedstocks and applications.
    Pakalapati H; Chang CK; Show PL; Arumugasamy SK; Lan JC
    J Biosci Bioeng; 2018 Sep; 126(3):282-292. PubMed ID: 29803402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production.
    Kumar G; Ponnusamy VK; Bhosale RR; Shobana S; Yoon JJ; Bhatia SK; Rajesh Banu J; Kim SH
    Bioresour Technol; 2019 Sep; 287():121427. PubMed ID: 31104939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyhydroxyalkanoates (PHA) production from biogas in waste treatment facilities: Assessing the potential impacts on economy, environment and society.
    Pérez V; Mota CR; Muñoz R; Lebrero R
    Chemosphere; 2020 Sep; 255():126929. PubMed ID: 32402877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources.
    Jo SY; Son J; Sohn YJ; Lim SH; Lee JY; Yoo JI; Park SY; Na JG; Park SJ
    Int J Biol Macromol; 2021 Dec; 192():978-998. PubMed ID: 34656544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production.
    Szacherska K; Oleskowicz-Popiel P; Ciesielski S; Mozejko-Ciesielska J
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implementing polyhydroxyalkanoates production to anaerobic digestion of organic fraction of municipal solid waste to diversify products and increase total energy recovery.
    Papa G; Pepè Sciarria T; Carrara A; Scaglia B; D'Imporzano G; Adani F
    Bioresour Technol; 2020 Dec; 318():124270. PubMed ID: 33099102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments.
    Li M; Wilkins MR
    Int J Biol Macromol; 2020 Aug; 156():691-703. PubMed ID: 32315680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. What Is New in the Field of Industrial Wastes Conversion into Polyhydroxyalkanoates by Bacteria?
    Marciniak P; Możejko-Ciesielska J
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34073198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.