These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38056203)

  • 41. Techno-economic analysis of food waste valorization for integrated production of polyhydroxyalkanoates and biofuels.
    Rajendran N; Han J
    Bioresour Technol; 2022 Mar; 348():126796. PubMed ID: 35121100
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Enrichment of Microbial Community for Accumulating Polyhydroxyalkanoates Using Propionate-Rich Waste.
    Wu B; Zheng D; Zhou Z; Wang JL; He XL; Li ZW; Yang HN; Qin H; Zhang M; Hu GQ; He MX
    Appl Biochem Biotechnol; 2017 Jun; 182(2):755-768. PubMed ID: 27981427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters.
    Choi SY; Rhie MN; Kim HT; Joo JC; Cho IJ; Son J; Jo SY; Sohn YJ; Baritugo KA; Pyo J; Lee Y; Lee SY; Park SJ
    Metab Eng; 2020 Mar; 58():47-81. PubMed ID: 31145993
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microbial cell factories for the production of polyhydroxyalkanoates.
    Nagarajan D; Aristya GR; Lin YJ; Chang JJ; Yen HW; Chang JS
    Essays Biochem; 2021 Jul; 65(2):337-353. PubMed ID: 34132340
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trends and challenges in the valorization of kitchen waste to polyhydroxyalkanoates.
    Chavan S; Yadav B; Tyagi RD; Wong JWC; Drogui P
    Bioresour Technol; 2023 Feb; 369():128323. PubMed ID: 36400275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simplified engineering design towards a competitive lipid-rich effluents valorization.
    Argiz L; Val Del Río Á; Correa-Galeote D; Rodelas B; Mosquera-Corral A
    J Environ Manage; 2022 Sep; 317():115433. PubMed ID: 35751251
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioprocess Engineering Aspects of Sustainable Polyhydroxyalkanoate Production in Cyanobacteria.
    Kamravamanesh D; Lackner M; Herwig C
    Bioengineering (Basel); 2018 Dec; 5(4):. PubMed ID: 30567391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polyhydroxyalkanoates for Sustainable Aquaculture: A Review of Recent Advancements, Challenges, and Future Directions.
    Asiri F
    J Agric Food Chem; 2024 Jan; 72(4):2034-2058. PubMed ID: 38227436
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters.
    Choi SY; Cho IJ; Lee Y; Kim YJ; Kim KJ; Lee SY
    Adv Mater; 2020 Sep; 32(35):e1907138. PubMed ID: 32249983
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities.
    de Mello AFM; Vandenberghe LPS; Machado CMB; Brehmer MS; de Oliveira PZ; Binod P; Sindhu R; Soccol CR
    Bioresour Technol; 2024 Feb; 393():130078. PubMed ID: 37993072
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Production of Polyhydroxyalkanoates (PHA) by
    Wang K; Zhang R
    J Microbiol Biotechnol; 2021 Feb; 31(2):338-347. PubMed ID: 33203825
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyhydroxyalkanoate synthesis by bacteria isolated from landfill and ETP with pomegranate peels as carbon source.
    Rayasam V; Chavan P; Kumar T
    Arch Microbiol; 2020 Dec; 202(10):2799-2808. PubMed ID: 32747997
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Production of polyhydroxyalkanoates as a feasible alternative for an integrated multiproduct lignocellulosic biorefinery.
    González-Rojo S; Díez-Antolínez R
    Bioresour Technol; 2023 Oct; 386():129493. PubMed ID: 37460022
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances in production of sustainable and biodegradable polymers from agro-food waste: Applications in tissue engineering and regenerative medicines.
    Nath PC; Sharma R; Debnath S; Nayak PK; Roy R; Sharma M; Inbaraj BS; Sridhar K
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):129129. PubMed ID: 38181913
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source.
    Wang P; Chen XT; Qiu YQ; Liang XF; Cheng MM; Wang YJ; Ren LH
    Biotechnol Appl Biochem; 2020 May; 67(3):307-316. PubMed ID: 31702835
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Natural and engineered polyhydroxyalkanoate (PHA) synthase: key enzyme in biopolyester production.
    Zou H; Shi M; Zhang T; Li L; Li L; Xian M
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7417-7426. PubMed ID: 28884324
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of the temperature in a mixed culture pilot scale aerobic process for food waste and sewage sludge conversion into polyhydroxyalkanoates.
    Valentino F; Lorini L; Gottardo M; Pavan P; Majone M
    J Biotechnol; 2020 Nov; 323():54-61. PubMed ID: 32763260
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring the potential of slaughterhouse waste valorization: Development and scale-up of a new bioprocess for medium-chain length polyhydroxyalkanoates production.
    Acedos MG; Moreno-Cid J; Verdú F; González JA; Tena S; López JC
    Chemosphere; 2022 Jan; 287(Pt 4):132401. PubMed ID: 34600930
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Can Polyhydroxyalkanoates Be Produced Efficiently From Waste Plant and Animal Oils?
    Surendran A; Lakshmanan M; Chee JY; Sulaiman AM; Thuoc DV; Sudesh K
    Front Bioeng Biotechnol; 2020; 8():169. PubMed ID: 32258007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Concomitant production of value-added products with polyhydroxyalkanoate (PHA) synthesis: A review.
    Yadav B; Talan A; Tyagi RD; Drogui P
    Bioresour Technol; 2021 Oct; 337():125419. PubMed ID: 34147774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.