These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38056340)

  • 1. Flexible liquid metal-based microfluidic strain sensors with fractal-designed microchannels for monitoring human motion and physiological signals.
    Luo Y; Fan H; Lai X; Zeng Z; Lan X; Lin P; Tang L; Wang W; Chen Y; Tang Y
    Biosens Bioelectron; 2024 Feb; 246():115905. PubMed ID: 38056340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superelastic, Sensitive, and Low Hysteresis Flexible Strain Sensor Based on Wave-Patterned Liquid Metal for Human Activity Monitoring.
    Chen J; Zhang J; Luo Z; Zhang J; Li L; Su Y; Gao X; Li Y; Tang W; Cao C; Liu Q; Wang L; Li H
    ACS Appl Mater Interfaces; 2020 May; 12(19):22200-22211. PubMed ID: 32315158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal Design for Advancing the Performance of Chemoresistive Sensors.
    Hassan K; Tung TT; Yap PL; Rastin H; Stanley N; Nine MJ; Losic D
    ACS Sens; 2021 Oct; 6(10):3685-3695. PubMed ID: 34644058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Electronics toward Wearable Sensing.
    Gao W; Ota H; Kiriya D; Takei K; Javey A
    Acc Chem Res; 2019 Mar; 52(3):523-533. PubMed ID: 30767497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of liquid metal-based soft microfluidic sensors via soft lithography.
    Zhang Y; Duan H; Li G; Peng M; Ma X; Li M; Yan S
    J Nanobiotechnology; 2022 May; 20(1):246. PubMed ID: 35643573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Flexible Strain Sensor Based on Embedded Ionic Liquid.
    Zhang H; Lowe A; Kalra A; Yu Y
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Stretchable and Transparent Microfluidic Strain Sensors for Monitoring Human Body Motions.
    Yoon SG; Koo HJ; Chang ST
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27562-70. PubMed ID: 26588166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive, Highly Stable, and Flexible Strain Sensor Inspired by Nature.
    Wang J; Liu L; Yang C; Zhang C; Li B; Meng X; Ma G; Wang D; Zhang J; Niu S; Zhao J; Han Z; Yao Z; Ren L
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16885-16893. PubMed ID: 35348316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Flexible Strain Sensor Based on the Porous Structure of a Carbon Black/Carbon Nanotube Conducting Network for Human Motion Detection.
    Zhang P; Chen Y; Li Y; Zhang Y; Zhang J; Huang L
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring.
    Gao Y; Ota H; Schaler EW; Chen K; Zhao A; Gao W; Fahad HM; Leng Y; Zheng A; Xiong F; Zhang C; Tai LC; Zhao P; Fearing RS; Javey A
    Adv Mater; 2017 Oct; 29(39):. PubMed ID: 28833673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serpentine-Inspired Strain Sensor with Predictable Cracks for Remote Bio-Mechanical Signal Monitoring.
    Hu J; Ren P; Zhu G; Yang J; Li Y; Zong Z; Sun Z
    Macromol Rapid Commun; 2022 Oct; 43(20):e2200372. PubMed ID: 35759398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breathable and Wearable Strain Sensors Based on Synergistic Conductive Carbon Nanotubes/Cotton Fabrics for Multi-directional Motion Detection.
    Zhang X; Ke L; Zhang X; Xu F; Hu Y; Lin H; Zhu J
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):25753-25762. PubMed ID: 35621731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spider-Web-Inspired Stretchable Graphene Woven Fabric for Highly Sensitive, Transparent, Wearable Strain Sensors.
    Liu X; Liu D; Lee JH; Zheng Q; Du X; Zhang X; Xu H; Wang Z; Wu Y; Shen X; Cui J; Mai YW; Kim JK
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2282-2294. PubMed ID: 30582684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress of flexible strain sensors for physiological signal monitoring.
    Shen Z; Liu F; Huang S; Wang H; Yang C; Hang T; Tao J; Xia W; Xie X
    Biosens Bioelectron; 2022 Sep; 211():114298. PubMed ID: 35598556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers.
    Ardalan S; Hosseinifard M; Vosough M; Golmohammadi H
    Biosens Bioelectron; 2020 Nov; 168():112450. PubMed ID: 32877780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Binary-Conductive-Network Silver Nanowires@Thiolated Graphene Foam-Based Room-Temperature Self-Healable Strain Sensor for Human Motion Detection.
    Zhang L; Li H; Lai X; Gao T; Zeng X
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):44360-44370. PubMed ID: 32901483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Printed Directional Bending Sensor with High Sensitivity and Low Hysteresis for Human Motion Detection and Soft Robotic Perception.
    Wang YF; Yoshida A; Takeda Y; Sekine T; Kumaki D; Tokito S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Sensitive and Durable Sea-Urchin-Shaped Silver Nanoparticles Strain Sensors for Human-Activity Monitoring.
    Zou Q; He K; Ou-Yang J; Zhang Y; Shen Y; Jin C
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14479-14488. PubMed ID: 33739083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional Mechanical Sensors for Versatile Physiological Signal Detection.
    Pang Y; Yang Z; Han X; Jian J; Li Y; Wang X; Qiao Y; Yang Y; Ren TL
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44173-44182. PubMed ID: 30465422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors.
    Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.