BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38056392)

  • 1. Modeling of small molecule's affinity to phospholipids using IAM-HPLC and QSRR approach enhanced by similarity-based machine algorithms.
    Ciura K
    J Chromatogr A; 2024 Jan; 1714():464549. PubMed ID: 38056392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity of Antifungal Isoxazolo[3,4-
    Ciura K; Fedorowicz J; Žuvela P; Lovrić M; Kapica H; Baranowski P; Sawicki W; Wong MW; Sączewski J
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33092252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-retention relationship studies with immobilized artificial membrane chromatography II: partial least squares regression.
    Li J; Sun J; He Z
    J Chromatogr A; 2007 Jan; 1140(1-2):174-9. PubMed ID: 17161410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of dual-filtering to create training sets leading to improved accuracy in quantitative structure-retention relationships modelling for hydrophilic interaction liquid chromatographic systems.
    Taraji M; Haddad PR; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Jul; 1507():53-62. PubMed ID: 28587779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography.
    Park SH; De Pra M; Haddad PR; Grosse S; Pohl CA; Steiner F
    J Chromatogr A; 2020 Jan; 1609():460508. PubMed ID: 31530383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.
    Park SH; Talebi M; Amos RIJ; Tyteca E; Haddad PR; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Nov; 1523():173-182. PubMed ID: 28291517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases.
    Biancolillo A; D'Archivio AA
    J Chromatogr A; 2022 Jan; 1663():462758. PubMed ID: 34954535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Method Development in Hydrophilic Interaction Liquid Chromatography for Pharmaceutical Analysis Using a Combination of Quantitative Structure-Retention Relationships and Design of Experiments.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    Anal Chem; 2017 Feb; 89(3):1870-1878. PubMed ID: 28208251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model.
    Park SH; Haddad PR; Talebi M; Tyteca E; Amos RI; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():68-75. PubMed ID: 28057331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retention Index Prediction Using Quantitative Structure-Retention Relationships for Improving Structure Identification in Nontargeted Metabolomics.
    Wen Y; Amos RIJ; Talebi M; Szucs R; Dolan JW; Pohl CA; Haddad PR
    Anal Chem; 2018 Aug; 90(15):9434-9440. PubMed ID: 29952550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilized artificial membrane chromatography: quantitative structure-retention relationships of structurally diverse drugs.
    Luco JM; Salinas AP; Torriero AA; Vázquez RN; Raba J; Marchevsky E
    J Chem Inf Comput Sci; 2003; 43(6):2129-36. PubMed ID: 14632465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction and mechanism elucidation of analyte retention on phospholipid stationary phases (IAM-HPLC) by in silico calculated physico-chemical descriptors.
    Russo G; Grumetto L; Barbato F; Vistoli G; Pedretti A
    Eur J Pharm Sci; 2017 Mar; 99():173-184. PubMed ID: 27919703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a chromatographic similarity index to establish localised Quantitative Structure-Retention Relationships for retention prediction. III Combination of Tanimoto similarity index, logP, and retention factor ratio to identify optimal analyte training sets for ion chromatography.
    Park SH; Haddad PR; Amos RIJ; Talebi M; Szucs R; Pohl CA; Dolan JW
    J Chromatogr A; 2017 Oct; 1520():107-116. PubMed ID: 28916393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between immobilized artificial membrane (IAM) HPLC data and lipophilicity in n-octanol for quinolone antibacterial agents.
    Barbato F; Cirocco V; Grumetto L; Immacolata La Rotonda M
    Eur J Pharm Sci; 2007 Aug; 31(5):288-97. PubMed ID: 17540545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure - retention relationships modelling in micellar liquid chromatography.
    Krmar J; Vukićević M; Kovačević A; Protić A; Zečević M; Otašević B
    J Chromatogr A; 2020 Jul; 1623():461146. PubMed ID: 32505269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of retention indices of drugs based on immobilized artificial membrane chromatography using Projection Pursuit Regression and Local Lazy Regression.
    Du H; Watzl J; Wang J; Zhang X; Yao X; Hu Z
    J Sep Sci; 2008 Jul; 31(12):2325-33. PubMed ID: 18491354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative structure-retention relationships models for prediction of high performance liquid chromatography retention time of small molecules: endogenous metabolites and banned compounds.
    Goryński K; Bojko B; Nowaczyk A; Buciński A; Pawliszyn J; Kaliszan R
    Anal Chim Acta; 2013 Oct; 797():13-9. PubMed ID: 24050665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The secret of reversed-phase/weak cation exchange retention mechanisms in mixed-mode liquid chromatography applied for small drug molecule analysis.
    Svrkota B; Krmar J; Protić A; Otašević B
    J Chromatogr A; 2023 Feb; 1690():463776. PubMed ID: 36640679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative structure retention relationship (QSRR) modelling for Analytes' retention prediction in LC-HRMS by applying different Machine Learning algorithms and evaluating their performance.
    Liapikos T; Zisi C; Kodra D; Kademoglou K; Diamantidou D; Begou O; Pappa-Louisi A; Theodoridis G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Feb; 1191():123132. PubMed ID: 35093854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.