These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38056423)

  • 21. Rapid target foraging with reach or gaze: The hand looks further ahead than the eye.
    Diamond JS; Wolpert DM; Flanagan JR
    PLoS Comput Biol; 2017 Jul; 13(7):e1005504. PubMed ID: 28683138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effort Foraging Task reveals positive correlation between individual differences in the cost of cognitive and physical effort in humans.
    Bustamante LA; Oshinowo T; Lee JR; Tong E; Burton AR; Shenhav A; Cohen JD; Daw ND
    Proc Natl Acad Sci U S A; 2023 Dec; 120(50):e2221510120. PubMed ID: 38064507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dopamine Modulates Dynamic Decision-Making during Foraging.
    Le Heron C; Kolling N; Plant O; Kienast A; Janska R; Ang YS; Fallon S; Husain M; Apps MAJ
    J Neurosci; 2020 Jul; 40(27):5273-5282. PubMed ID: 32457071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rat Anterior Cingulate Cortex Continuously Signals Decision Variables in a Patch Foraging Task.
    Kane GA; James MH; Shenhav A; Daw ND; Cohen JD; Aston-Jones G
    J Neurosci; 2022 Jul; 42(29):5730-5744. PubMed ID: 35688627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Learning the opportunity cost of time in a patch-foraging task.
    Constantino SM; Daw ND
    Cogn Affect Behav Neurosci; 2015 Dec; 15(4):837-53. PubMed ID: 25917000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prior actions influence cost-benefit-related decision-making during mouse foraging behaviours.
    Dylda E; Wang KH
    Eur J Neurosci; 2022 Jul; 56(2):3861-3874. PubMed ID: 35545375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of Premotor and Primary Motor Cortical Activity during Volitional Adjustments of Speed-Accuracy Trade-Offs.
    Thura D; Cisek P
    J Neurosci; 2016 Jan; 36(3):938-56. PubMed ID: 26791222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vigor in the face of fluctuating rates of reward: an experimental examination.
    Guitart-Masip M; Beierholm UR; Dolan R; Duzel E; Dayan P
    J Cogn Neurosci; 2011 Dec; 23(12):3933-8. PubMed ID: 21736459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vigor of reaching, walking, and gazing movements: on the consistency of interindividual differences.
    Labaune O; Deroche T; Teulier C; Berret B
    J Neurophysiol; 2020 Jan; 123(1):234-242. PubMed ID: 31774359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid Visuomotor Responses Reflect Value-Based Decisions.
    Carroll TJ; McNamee D; Ingram JN; Wolpert DM
    J Neurosci; 2019 May; 39(20):3906-3920. PubMed ID: 30850511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reward-Dependent Selection of Feedback Gains Impacts Rapid Motor Decisions.
    De Comite A; Crevecoeur F; Lefèvre P
    eNeuro; 2022; 9(2):. PubMed ID: 35277452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perceived effort affects choice of limb and reaction time of movements.
    Wang J; Lum PS; Shadmehr R; Lee SW
    J Neurophysiol; 2021 Jan; 125(1):63-73. PubMed ID: 33146065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Representation of Effort in Decision-Making and Motor Control.
    Shadmehr R; Huang HJ; Ahmed AA
    Curr Biol; 2016 Jul; 26(14):1929-34. PubMed ID: 27374338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reward Prediction Error Modulates Saccade Vigor.
    Sedaghat-Nejad E; Herzfeld DJ; Shadmehr R
    J Neurosci; 2019 Jun; 39(25):5010-5017. PubMed ID: 31015343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deliberative Decision-Making in Macaques Removes Reward-Driven Response Vigor.
    Daddaoua N; Jedema HP; Bradberry CW
    Front Behav Neurosci; 2021; 15():674169. PubMed ID: 34489655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Context-dependent urgency influences speed-accuracy trade-offs in decision-making and movement execution.
    Thura D; Cos I; Trung J; Cisek P
    J Neurosci; 2014 Dec; 34(49):16442-54. PubMed ID: 25471582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dopamine receptors regulate preference between high-effort and high-risk rewards.
    Gabriel DBK; Liley AE; Freels TG; Simon NW
    Psychopharmacology (Berl); 2021 Apr; 238(4):991-1004. PubMed ID: 33410986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methodological and conceptual issues regarding occupational psychosocial coronary heart disease epidemiology.
    Burr H; Formazin M; Pohrt A
    Scand J Work Environ Health; 2016 May; 42(3):251-5. PubMed ID: 26960179
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dysfunctional effort-based decision-making underlies apathy in genetic cerebral small vessel disease.
    Le Heron C; Manohar S; Plant O; Muhammed K; Griffanti L; Nemeth A; Douaud G; Markus HS; Husain M
    Brain; 2018 Nov; 141(11):3193-3210. PubMed ID: 30346491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissociating the Impact of Movement Time and Energy Costs on Decision-Making and Action Initiation in Humans.
    Saleri Lunazzi C; Reynaud AJ; Thura D
    Front Hum Neurosci; 2021; 15():715212. PubMed ID: 34790104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.