These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 38056688)

  • 21. Metabolic engineering of Corynebacterium glutamicum for the production of L-ornithine.
    Kim SY; Lee J; Lee SY
    Biotechnol Bioeng; 2015 Feb; 112(2):416-21. PubMed ID: 25163446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glutaric acid production by systems metabolic engineering of an l-lysine-overproducing
    Han T; Kim GB; Lee SY
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30328-30334. PubMed ID: 33199604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A genome-reduced Corynebacterium glutamicum derivative discloses a hidden pathway relevant for 1,2-propanediol production.
    Siebert D; Glawischnig E; Wirth MT; Vannahme M; Salazar-Quirós Á; Weiske A; Saydam E; Möggenried D; Wendisch VF; Blombach B
    Microb Cell Fact; 2024 Feb; 23(1):62. PubMed ID: 38402147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering microbial cell factories: Metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products.
    Heider SA; Wendisch VF
    Biotechnol J; 2015 Aug; 10(8):1170-84. PubMed ID: 26216246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport and metabolic engineering of the cell factory Corynebacterium glutamicum.
    Pérez-García F; Wendisch VF
    FEMS Microbiol Lett; 2018 Aug; 365(16):. PubMed ID: 29982619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.
    Alonso-Gutierrez J; Chan R; Batth TS; Adams PD; Keasling JD; Petzold CJ; Lee TS
    Metab Eng; 2013 Sep; 19():33-41. PubMed ID: 23727191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protocatechuate overproduction by Corynebacterium glutamicum via simultaneous engineering of native and heterologous biosynthetic pathways.
    Kogure T; Suda M; Hiraga K; Inui M
    Metab Eng; 2021 May; 65():232-242. PubMed ID: 33238211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolic engineering of Corynebacterium glutamicum for anthocyanin production.
    Zha J; Zang Y; Mattozzi M; Plassmeier J; Gupta M; Wu X; Clarkson S; Koffas MAG
    Microb Cell Fact; 2018 Sep; 17(1):143. PubMed ID: 30217197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of trans-cinnamic acid by whole-cell bioconversion from L-phenylalanine in engineered Corynebacterium glutamicum.
    Son J; Jang JH; Choi IH; Lim CG; Jeon EJ; Bae Bang H; Jeong KJ
    Microb Cell Fact; 2021 Jul; 20(1):145. PubMed ID: 34303376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolic engineering of Corynebacterium glutamicum for L-cysteine production.
    Wei L; Wang H; Xu N; Zhou W; Ju J; Liu J; Ma Y
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1325-1338. PubMed ID: 30564850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational engineering of multiple module pathways for the production of L-phenylalanine in Corynebacterium glutamicum.
    Zhang C; Zhang J; Kang Z; Du G; Chen J
    J Ind Microbiol Biotechnol; 2015 May; 42(5):787-97. PubMed ID: 25665502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid.
    Feng L; Zhang Y; Fu J; Mao Y; Chen T; Zhao X; Wang Z
    Biotechnol Bioeng; 2016 Jun; 113(6):1284-93. PubMed ID: 26616115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient production of glutathione with multi-pathway engineering in Corynebacterium glutamicum.
    Liu W; Zhu X; Lian J; Huang L; Xu Z
    J Ind Microbiol Biotechnol; 2019 Dec; 46(12):1685-1695. PubMed ID: 31420796
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Co-production of l-Lysine and Heterologous Squalene in CRISPR/dCas9-Assisted
    Park J; Woo HM
    J Agric Food Chem; 2022 Nov; 70(46):14755-14760. PubMed ID: 36374274
    [No Abstract]   [Full Text] [Related]  

  • 35. High-yield ectoine production in engineered Corynebacterium glutamicum by fine metabolic regulation via plug-in repressor library.
    Jiang A; Song Y; You J; Zhang X; Xu M; Rao Z
    Bioresour Technol; 2022 Oct; 362():127802. PubMed ID: 36007762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum.
    Tsuge Y; Matsuzawa H
    World J Microbiol Biotechnol; 2021 Feb; 37(3):49. PubMed ID: 33569648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A "push-pull-restrain" strategy to improve citronellol production in Saccharomyces cerevisiae.
    Jiang G; Yao M; Wang Y; Xiao W; Yuan Y
    Metab Eng; 2021 Jul; 66():51-59. PubMed ID: 33857581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attenuating l-lysine production by deletion of ddh and lysE and their effect on l-threonine and l-isoleucine production in Corynebacterium glutamicum.
    Dong X; Zhao Y; Hu J; Li Y; Wang X
    Enzyme Microb Technol; 2016 Nov; 93-94():70-78. PubMed ID: 27702487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production.
    Bückle-Vallant V; Krause FS; Messerschmidt S; Eikmanns BJ
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):297-311. PubMed ID: 24169948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic engineering to improve 1,5-diaminopentane production from cellobiose using β-glucosidase-secreting Corynebacterium glutamicum.
    Matsuura R; Kishida M; Konishi R; Hirata Y; Adachi N; Segawa S; Imao K; Tanaka T; Kondo A
    Biotechnol Bioeng; 2019 Oct; 116(10):2640-2651. PubMed ID: 31184369
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.