BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 38056825)

  • 1. Multi-scale model of axonal and dendritic polarization by transcranial direct current stimulation in realistic head geometry.
    Aberra AS; Wang R; Grill WM; Peterchev AV
    Brain Stimul; 2023; 16(6):1776-1791. PubMed ID: 38056825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-scale model of axonal and dendritic polarization by transcranial direct current stimulation in realistic head geometry.
    Aberra AS; Wang R; Grill WM; Peterchev AV
    bioRxiv; 2023 Aug; ():. PubMed ID: 37767087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons.
    Aberra AS; Wang B; Grill WM; Peterchev AV
    Brain Stimul; 2020; 13(1):175-189. PubMed ID: 31611014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency-dependent membrane polarization across neocortical cell types and subcellular elements by transcranial alternating current stimulation.
    Huang X; Wei X; Wang J; Yi G
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38382101
    [No Abstract]   [Full Text] [Related]  

  • 5. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro.
    Radman T; Ramos RL; Brumberg JC; Bikson M
    Brain Stimul; 2009 Oct; 2(4):215-28, 228.e1-3. PubMed ID: 20161507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-individual variability in current direction for common tDCS montages.
    Evans C; Zich C; Lee JSA; Ward N; Bestmann S
    Neuroimage; 2022 Oct; 260():119501. PubMed ID: 35878726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation.
    Seo H; Jun SC
    Brain Stimul; 2019; 12(2):275-289. PubMed ID: 30449635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-dimensional representation of a neuron in a uniform electric field.
    Radman T; Datta A; Ramos RL; Brumberg JC; Bikson M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6481-4. PubMed ID: 19964438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: An fMRI study.
    Jamil A; Batsikadze G; Kuo HI; Meesen RLJ; Dechent P; Paulus W; Nitsche MA
    Hum Brain Mapp; 2020 Apr; 41(6):1644-1666. PubMed ID: 31860160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key factors in the cortical response to transcranial electrical Stimulations-A multi-scale modeling study.
    Chung H; Im C; Seo H; Jun SC
    Comput Biol Med; 2022 May; 144():105328. PubMed ID: 35231800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational study on effect of a transcranial channel as a skull/brain interface in the conventional rectangular patch-type transcranial direct current stimulation.
    Hyeon Seo ; Hyoung-Ihl Kim ; Sung Chan Jun
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1946-1949. PubMed ID: 29060274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarity-independent effects of tDCS on paired associative stimulation-induced plasticity.
    Faber H; Opitz A; Müller-Dahlhaus F; Ziemann U
    Brain Stimul; 2017; 10(6):1061-1069. PubMed ID: 28822654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects.
    Rahman A; Reato D; Arlotti M; Gasca F; Datta A; Parra LC; Bikson M
    J Physiol; 2013 May; 591(10):2563-78. PubMed ID: 23478132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study.
    Kuo HI; Bikson M; Datta A; Minhas P; Paulus W; Kuo MF; Nitsche MA
    Brain Stimul; 2013 Jul; 6(4):644-8. PubMed ID: 23149292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of transcranial direct current stimulation on corticospinal and cortico-cortical excitability and response variability: Conventional versus high-definition montages.
    Pellegrini M; Zoghi M; Jaberzadeh S
    Neurosci Res; 2021 May; 166():12-25. PubMed ID: 32610058
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans.
    Groppa S; Bergmann TO; Siems C; Mölle M; Marshall L; Siebner HR
    Neuroscience; 2010 Apr; 166(4):1219-25. PubMed ID: 20083166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).
    Alam M; Truong DQ; Khadka N; Bikson M
    Phys Med Biol; 2016 Jun; 61(12):4506-21. PubMed ID: 27223853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-definition transcranial direct-current stimulation of the right M1 further facilitates left M1 excitability during crossed facilitation.
    Cabibel V; Muthalib M; Teo WP; Perrey S
    J Neurophysiol; 2018 Apr; 119(4):1266-1272. PubMed ID: 29357451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. tDCS changes in motor excitability are specific to orientation of current flow.
    Rawji V; Ciocca M; Zacharia A; Soares D; Truong D; Bikson M; Rothwell J; Bestmann S
    Brain Stimul; 2018; 11(2):289-298. PubMed ID: 29146468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Animal models of transcranial direct current stimulation: Methods and mechanisms.
    Jackson MP; Rahman A; Lafon B; Kronberg G; Ling D; Parra LC; Bikson M
    Clin Neurophysiol; 2016 Nov; 127(11):3425-3454. PubMed ID: 27693941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.