These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38057180)

  • 21. Quantitative ultrasound radiomics in predicting response to neoadjuvant chemotherapy in patients with locally advanced breast cancer: Results from multi-institutional study.
    DiCenzo D; Quiaoit K; Fatima K; Bhardwaj D; Sannachi L; Gangeh M; Sadeghi-Naini A; Dasgupta A; Kolios MC; Trudeau M; Gandhi S; Eisen A; Wright F; Look Hong N; Sahgal A; Stanisz G; Brezden C; Dinniwell R; Tran WT; Yang W; Curpen B; Czarnota GJ
    Cancer Med; 2020 Aug; 9(16):5798-5806. PubMed ID: 32602222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiomics Based on Dynamic Contrast-Enhanced MRI to Early Predict Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Therapy.
    Zeng Q; Ke M; Zhong L; Zhou Y; Zhu X; He C; Liu L
    Acad Radiol; 2023 Aug; 30(8):1638-1647. PubMed ID: 36564256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacy of shear-wave elastography versus dynamic optical breast imaging for predicting the pathological response to neoadjuvant chemotherapy in breast cancer.
    Zhang J; Tan X; Zhang X; Kang Y; Li J; Ren W; Ma Y
    Eur J Radiol; 2020 Aug; 129():109098. PubMed ID: 32559591
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computed Tomography-Based Radiomics Analysis for Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer Patients.
    Duan Y; Yang G; Miao W; Song B; Wang Y; Yan L; Wu F; Zhang R; Mao Y; Wang Z
    J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):199-204. PubMed ID: 36790871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning radiomics of ultrasonography can predict response to neoadjuvant chemotherapy in breast cancer at an early stage of treatment: a prospective study.
    Gu J; Tong T; He C; Xu M; Yang X; Tian J; Jiang T; Wang K
    Eur Radiol; 2022 Mar; 32(3):2099-2109. PubMed ID: 34654965
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Can multi-modal radiomics using pretreatment ultrasound and tomosynthesis predict response to neoadjuvant systemic treatment in breast cancer?
    Cai L; Sidey-Gibbons C; Nees J; Riedel F; Schäfgen B; Togawa R; Killinger K; Heil J; Pfob A; Golatta M
    Eur Radiol; 2024 Apr; 34(4):2560-2573. PubMed ID: 37707548
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pretreatment ultrasound-based deep learning radiomics model for the early prediction of pathologic response to neoadjuvant chemotherapy in breast cancer.
    Yu FH; Miao SM; Li CY; Hang J; Deng J; Ye XH; Liu Y
    Eur Radiol; 2023 Aug; 33(8):5634-5644. PubMed ID: 36976336
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feasibility of Imaging and Treatment Monitoring of Breast Lesions with Three-Dimensional Shear Wave Elastography.
    Athanasiou A; Latorre-Ossa H; Criton A; Tardivon A; Gennisson JL; Tanter M
    Ultraschall Med; 2017 Jan; 38(1):51-59. PubMed ID: 25741668
    [No Abstract]   [Full Text] [Related]  

  • 29. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography.
    Mao N; Shi Y; Lian C; Wang Z; Zhang K; Xie H; Zhang H; Chen Q; Cheng G; Xu C; Dai Y
    Eur Radiol; 2022 May; 32(5):3207-3219. PubMed ID: 35066632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer.
    Li ZY; Wang XD; Li M; Liu XJ; Ye Z; Song B; Yuan F; Yuan Y; Xia CC; Zhang X; Li Q
    World J Gastroenterol; 2020 May; 26(19):2388-2402. PubMed ID: 32476800
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MRI-based Quantification of Intratumoral Heterogeneity for Predicting Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer.
    Shi Z; Huang X; Cheng Z; Xu Z; Lin H; Liu C; Chen X; Liu C; Liang C; Lu C; Cui Y; Han C; Qu J; Shen J; Liu Z
    Radiology; 2023 Jul; 308(1):e222830. PubMed ID: 37432083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An XGBoost Machine Learning Based Model for Predicting Ki-67 Value ≥ 15% in T
    Lu Y; Yang F; Tao Y; An P
    Technol Cancer Res Treat; 2024; 23():15330338241265989. PubMed ID: 39051517
    [No Abstract]   [Full Text] [Related]  

  • 33. Management of breast lesions seen on US images: dual-model radiomics including shear-wave elastography may match performance of expert radiologists.
    Jiang M; Li CL; Chen RX; Tang SC; Lv WZ; Luo XM; Chuan ZR; Jin CY; Liao JT; Cui XW; Dietrich CF
    Eur J Radiol; 2021 Aug; 141():109781. PubMed ID: 34029933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Radiomics of contrast-enhanced spectral mammography for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer.
    Zhang K; Lin J; Lin F; Wang Z; Zhang H; Zhang S; Mao N; Qiao G
    J Xray Sci Technol; 2023; 31(4):669-683. PubMed ID: 37066960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-center evaluation of artificial intelligent imaging and clinical models for predicting neoadjuvant chemotherapy response in breast cancer.
    Qi TH; Hian OH; Kumaran AM; Tan TJ; Cong TRY; Su-Xin GL; Lim EH; Ng R; Yeo MCR; Tching FLLW; Zewen Z; Hui CYS; Xin WR; Ooi SKG; Leong LCH; Tan SM; Preetha M; Sim Y; Tan VKM; Yeong J; Yong WF; Cai Y; Nei WL; ;
    Breast Cancer Res Treat; 2022 May; 193(1):121-138. PubMed ID: 35262831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-modal computer-assisted evaluation of axillary lymph node metastasis in breast cancer patients on both real-time elastography and B-mode ultrasound.
    Zhang Q; Suo J; Chang W; Shi J; Chen M
    Eur J Radiol; 2017 Oct; 95():66-74. PubMed ID: 28987700
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI Predicts Pathologic Complete Response in Breast Cancer Patients Treated with Neoadjuvant Chemotherapy.
    Guo L; Du S; Gao S; Zhao R; Huang G; Jin F; Teng Y; Zhang L
    Cancers (Basel); 2022 Jul; 14(14):. PubMed ID: 35884576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Usefulness of new shear wave elastography in early predicting the efficacy of neoadjuvant chemotherapy for patients with breast cancer: where and when to measure is optimal?
    Gu JH; He C; Zhao QY; Jiang TA
    Breast Cancer; 2022 May; 29(3):478-486. PubMed ID: 35038129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy.
    Ma M; Gan L; Liu Y; Jiang Y; Xin L; Liu Y; Qin N; Cheng Y; Liu Q; Xu L; Zhang Y; Wang X; Zhang X; Ye J; Wang X
    Eur J Radiol; 2022 Jan; 146():110095. PubMed ID: 34890936
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.