BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38057429)

  • 1. Optogenetic control of β cell function.
    Jimenez-Gonzalez M; Stanley S
    Nat Biomed Eng; 2023 Dec; ():. PubMed ID: 38057429
    [No Abstract]   [Full Text] [Related]  

  • 2. Optogenetic control of beta-carotene bioproduction in yeast across multiple lab-scales.
    Pouzet S; Cruz-Ramón J; Le Bec M; Cordier C; Banderas A; Barral S; Castaño-Cerezo S; Lautier T; Truan G; Hersen P
    Front Bioeng Biotechnol; 2023; 11():1085268. PubMed ID: 36814715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling pathological activity of Parkinson basal ganglia based on excitation and inhibition optogenetic models and monophasic and biphasic electrical stimulations.
    Ghasemzadeh N; Rahatabad FN; Haghipour S; Miandoab SA; Maghooli K
    J Biosci; 2023; 48():. PubMed ID: 37846022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based optogenetic stimulation to regulate beta oscillations in Parkinsonian neural networks.
    Yu Y; Han F; Wang Q; Wang Q
    Cogn Neurodyn; 2022 Jun; 16(3):667-681. PubMed ID: 35603050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors.
    Yu C; Cassar IR; Sambangi J; Grill WM
    J Neurosci; 2020 May; 40(22):4323-4334. PubMed ID: 32312888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic control of intracellular flows and cell migration: A comprehensive mathematical analysis with a minimal active gel model.
    Drozdowski OM; Ziebert F; Schwarz US
    Phys Rev E; 2021 Aug; 104(2-1):024406. PubMed ID: 34525652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic control of mesenchymal cell fate towards precise bone regeneration.
    Wang W; Huang D; Ren J; Li R; Feng Z; Guan C; Bao B; Cai B; Ling J; Zhou C
    Theranostics; 2019; 9(26):8196-8205. PubMed ID: 31754390
    [No Abstract]   [Full Text] [Related]  

  • 8. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time electrochemical recording of dopamine release under optogenetic stimulation.
    Chiu WT; Lin CM; Tsai TC; Wu CW; Tsai CL; Lin SH; Chen JJ
    PLoS One; 2014; 9(2):e89293. PubMed ID: 24586667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic cell control in experimental models of neurological disorders.
    Tønnesen J
    Behav Brain Res; 2013 Oct; 255():35-43. PubMed ID: 23871610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic perturbation of the biochemical pathways that control cell behavior.
    Haar LL; Lawrence DS; Hughes RM
    Methods Enzymol; 2019; 622():309-328. PubMed ID: 31155059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards the clinical translation of optogenetic skeletal muscle stimulation.
    Gundelach LA; Hüser MA; Beutner D; Ruther P; Bruegmann T
    Pflugers Arch; 2020 May; 472(5):527-545. PubMed ID: 32415463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities.
    Li G; Yang J; Wang Y; Wang W; Liu L
    Nanoscale; 2018 Dec; 10(45):21046-21051. PubMed ID: 30276394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic Control of RhoA to Probe Subcellular Mechanochemical Circuitry.
    Cavanaugh KE; Oakes PW; Gardel ML
    Curr Protoc Cell Biol; 2020 Mar; 86(1):e102. PubMed ID: 32031760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of optogenetic glial cells to neuron-glial communication.
    Hyung S; Park JH; Jung K
    Front Cell Neurosci; 2023; 17():1249043. PubMed ID: 37868193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Tools for Subcellular Applications in Neuroscience.
    Rost BR; Schneider-Warme F; Schmitz D; Hegemann P
    Neuron; 2017 Nov; 96(3):572-603. PubMed ID: 29096074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optogenetic Control of TGF-β Signaling.
    Li Y; Zi Z
    Methods Mol Biol; 2022; 2488():113-124. PubMed ID: 35347686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic control of neural differentiation in Opto-mGluR6 engineered retinal pigment epithelial cell line and mesenchymal stem cells.
    Shams Najafabadi H; Sadeghi M; Zibaii MI; Soheili ZS; Samiee S; Ghasemi P; Hosseini M; Gholami Pourbadie H; Ahmadieh H; Taghizadeh S; Ranaei Pirmardan E
    J Cell Biochem; 2021 Aug; 122(8):851-869. PubMed ID: 33847009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliably Engineering and Controlling Stable Optogenetic Gene Circuits in Mammalian Cells.
    Guinn MT; Coraci D; Guinn L; Balázsi G
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34309594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.