BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 38057625)

  • 1. Head-mounted central venous access during optical recordings and manipulations of neural activity in mice.
    Liu C; Freeman DJ; Lammel S
    Nat Protoc; 2024 Mar; 19(3):960-983. PubMed ID: 38057625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber-optic implantation for chronic optogenetic stimulation of brain tissue.
    Ung K; Arenkiel BR
    J Vis Exp; 2012 Oct; (68):e50004. PubMed ID: 23128465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OptoZIF Drive: a 3D printed implant and assembly tool package for neural recording and optical stimulation in freely moving mice.
    Freedman DS; Schroeder JB; Telian GI; Zhang Z; Sunil S; Ritt JT
    J Neural Eng; 2016 Dec; 13(6):066013. PubMed ID: 27762238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GRINtrode: a neural implant for simultaneous two-photon imaging and extracellular electrophysiology in freely moving animals.
    McCullough CM; Ramirez-Gordillo D; Hall M; Futia GL; Moran AK; Gibson EA; Restrepo D
    Neurophotonics; 2022 Oct; 9(4):045009. PubMed ID: 36466189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DMCdrive: practical 3D-printable micro-drive system for reliable chronic multi-tetrode recording and optogenetic application in freely behaving rodents.
    Kim H; Brünner HS; Carlén M
    Sci Rep; 2020 Jul; 10(1):11838. PubMed ID: 32678238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional optrode for opsin delivery, optical stimulation, and electrophysiological recordings in freely moving rats.
    Sharma K; Jäckel Z; Schneider A; Paul O; Diester I; Ruther P
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795066
    [No Abstract]   [Full Text] [Related]  

  • 7. HOPE: Hybrid-Drive Combining Optogenetics, Pharmacology and Electrophysiology.
    Delcasso S; Denagamage S; Britton Z; Graybiel AM
    Front Neural Circuits; 2018; 12():41. PubMed ID: 29872379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Optogenetics with Stimulus Calibration.
    Coddington LT; Dudman JT
    Methods Mol Biol; 2021; 2188():273-283. PubMed ID: 33119857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optetrode: a multichannel readout for optogenetic control in freely moving mice.
    Anikeeva P; Andalman AS; Witten I; Warden M; Goshen I; Grosenick L; Gunaydin LA; Frank LM; Deisseroth K
    Nat Neurosci; 2011 Dec; 15(1):163-70. PubMed ID: 22138641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Customizable, wireless and implantable neural probe design and fabrication via 3D printing.
    Parker KE; Lee J; Kim JR; Kawakami C; Kim CY; Qazi R; Jang KI; Jeong JW; McCall JG
    Nat Protoc; 2023 Jan; 18(1):3-21. PubMed ID: 36271159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Toolbox for Optophysiological Experiments in Freely Moving Rats.
    Hardung S; Alyahyay M; Eriksson D; Diester I
    Front Syst Neurosci; 2017; 11():27. PubMed ID: 28553206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Head-mounted optical imaging and optogenetic stimulation system for use in behaving primates.
    Zaraza D; Chernov MM; Yang Y; Rogers JA; Roe AW; Friedman RM
    Cell Rep Methods; 2022 Dec; 2(12):100351. PubMed ID: 36590689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice.
    Berg L; Gerdey J; Masseck OA
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute head-fixed recordings in awake mice with multiple Neuropixels probes.
    Durand S; Heller GR; Ramirez TK; Luviano JA; Williford A; Sullivan DT; Cahoon AJ; Farrell C; Groblewski PA; Bennett C; Siegle JH; Olsen SR
    Nat Protoc; 2023 Feb; 18(2):424-457. PubMed ID: 36477710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined implanted central venous access and cortical recording electrode array in freely behaving mice.
    Obert DP; Killing D; Happe T; Altunkaya A; Schneider G; Kreuzer M; Fenzl T
    MethodsX; 2021; 8():101466. PubMed ID: 35004192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A magnetic rotary optical fiber connector for optogenetic experiments in freely moving animals.
    Klorig DC; Godwin DW
    J Neurosci Methods; 2014 Apr; 227():132-9. PubMed ID: 24613796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice.
    Doronina-Amitonova LV; Fedotov IV; Ivashkina OI; Zots MA; Fedotov AB; Anokhin KV; Zheltikov AM
    Sci Rep; 2013 Nov; 3():3265. PubMed ID: 24253232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A flexible and versatile system for multi-color fiber photometry and optogenetic manipulation.
    Formozov A; Dieter A; Wiegert JS
    Cell Rep Methods; 2023 Mar; 3(3):100418. PubMed ID: 37056369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.