BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 38057665)

  • 21. The dg2 (for) gene confers a renal phenotype in Drosophila by modulation of cGMP-specific phosphodiesterase.
    MacPherson MR; Broderick KE; Graham S; Day JP; Houslay MD; Dow JA; Davies SA
    J Exp Biol; 2004 Jul; 207(Pt 16):2769-76. PubMed ID: 15235005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. cGMP signalling in a transporting epithelium.
    Davies SA; Day JP
    Biochem Soc Trans; 2006 Aug; 34(Pt 4):512-4. PubMed ID: 16856847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separate control of anion and cation transport in malpighian tubules of Drosophila Melanogaster.
    O'Donnell MJ; Dow JA; Huesmann GR; Tublitz NJ; Maddrell SH
    J Exp Biol; 1996 May; 199(Pt 5):1163-75. PubMed ID: 8786336
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neuropeptide stimulation of the nitric oxide signaling pathway in Drosophila melanogaster Malpighian tubules.
    Davies SA; Stewart EJ; Huesmann GR; Skaer NJ; Maddrell SH; Tublitz NJ; Dow JA
    Am J Physiol; 1997 Aug; 273(2 Pt 2):R823-7. PubMed ID: 9277574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systematic G-protein-coupled receptor analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles.
    Radford JC; Davies SA; Dow JA
    J Biol Chem; 2002 Oct; 277(41):38810-7. PubMed ID: 12163486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Drosophila nephrocyte: back on stage.
    Na J; Cagan R
    J Am Soc Nephrol; 2013 Feb; 24(2):161-3. PubMed ID: 23334393
    [No Abstract]   [Full Text] [Related]  

  • 27. Novel aspects of the transport of organic anions by the malpighian tubules of Drosophila melanogaster.
    Linton SM; O'Donnell MJ
    J Exp Biol; 2000 Dec; 203(Pt 23):3575-84. PubMed ID: 11060218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NorpA and itpr mutants reveal roles for phospholipase C and inositol (1,4,5)- trisphosphate receptor in Drosophila melanogaster renal function.
    Pollock VP; Radford JC; Pyne S; Hasan G; Dow JA; Davies SA
    J Exp Biol; 2003 Mar; 206(Pt 5):901-11. PubMed ID: 12547945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-apoptotic function of apoptotic proteins in the development of Malpighian tubules of Drosophila melanogaster.
    Tapadia MG; Gautam NK
    J Biosci; 2011 Aug; 36(3):531-44. PubMed ID: 21799264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The septate junction protein Tetraspanin 2A is critical to the structure and function of Malpighian tubules in
    Beyenbach KW; Schöne F; Breitsprecher LF; Tiburcy F; Furuse M; Izumi Y; Meyer H; Jonusaite S; Rodan AR; Paululat A
    Am J Physiol Cell Physiol; 2020 Jun; 318(6):C1107-C1122. PubMed ID: 32267718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Migration of Drosophila intestinal stem cells across organ boundaries.
    Takashima S; Paul M; Aghajanian P; Younossi-Hartenstein A; Hartenstein V
    Development; 2013 May; 140(9):1903-11. PubMed ID: 23571215
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Electron microscopic studies of the renal tubules (Malpighian tubules) in Drosophila melanogaster. II. Transcellular membrane-bound transport].
    Eichelberg D; Wessing A
    Z Zellforsch Mikrosk Anat; 1971; 121(1):127-52. PubMed ID: 5000136
    [No Abstract]   [Full Text] [Related]  

  • 33. AedesCAPA-PVK-1 displays diuretic and dose dependent antidiuretic potential in the larval mosquito Aedes aegypti (Liverpool).
    Ionescu A; Donini A
    J Insect Physiol; 2012 Oct; 58(10):1299-306. PubMed ID: 22820035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions between detoxification mechanisms and excretion in Malpighian tubules of Drosophila melanogaster.
    Chahine S; O'Donnell MJ
    J Exp Biol; 2011 Feb; 214(Pt 3):462-8. PubMed ID: 21228205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of epithelial K(+) transport in Malpighian tubules of Drosophila melanogaster: evidence for spatial and temporal heterogeneity.
    Rheault MR; O'Donnell MJ
    J Exp Biol; 2001 Jul; 204(Pt 13):2289-99. PubMed ID: 11507112
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of epithelial innate immunity by autocrine production of nitric oxide.
    Davies SA; Dow JA
    Gen Comp Endocrinol; 2009 May; 162(1):113-21. PubMed ID: 18952086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The orphan pentameric ligand-gated ion channel pHCl-2 is gated by pH and regulates fluid secretion in Drosophila Malpighian tubules.
    Feingold D; Starc T; O'Donnell MJ; Nilson L; Dent JA
    J Exp Biol; 2016 Sep; 219(Pt 17):2629-38. PubMed ID: 27358471
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiology, Development, and Disease Modeling in the
    Cohen E; Sawyer JK; Peterson NG; Dow JAT; Fox DT
    Genetics; 2020 Feb; 214(2):235-264. PubMed ID: 32029579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling Renal Disease "On the Fly".
    Millet-Boureima C; Porras Marroquin J; Gamberi C
    Biomed Res Int; 2018; 2018():5697436. PubMed ID: 29955604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Model organisms: new insights into ion channel and transporter function. L-type calcium channels regulate epithelial fluid transport in Drosophila melanogaster.
    MacPherson MR; Pollock VP; Broderick KE; Kean L; O'Connell FC; Dow JA; Davies SA
    Am J Physiol Cell Physiol; 2001 Feb; 280(2):C394-407. PubMed ID: 11208535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.