These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 38057834)

  • 1. The functions of SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) in biological process and disease.
    Luo H; Wu X; Zhu XH; Yi X; Du D; Jiang DS
    Epigenetics Chromatin; 2023 Dec; 16(1):47. PubMed ID: 38057834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level.
    Park I; Hwang YJ; Kim T; Viswanath ANI; Londhe AM; Jung SY; Sim KM; Min SJ; Lee JE; Seong J; Kim YK; No KT; Ryu H; Pae AN
    J Comput Aided Mol Des; 2017 Oct; 31(10):877-889. PubMed ID: 28879500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SETDB1, an H3K9-specific methyltransferase: An attractive epigenetic target to combat cancer.
    Prashanth S; Radha Maniswami R; Rajajeyabalachandran G; Jegatheesan SK
    Drug Discov Today; 2024 May; 29(5):103982. PubMed ID: 38614159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SETDB1-Mediated Silencing of Retroelements.
    Fukuda K; Shinkai Y
    Viruses; 2020 May; 12(6):. PubMed ID: 32486217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ubiquitination of Lysine 867 of the Human SETDB1 Protein Upregulates Its Histone H3 Lysine 9 (H3K9) Methyltransferase Activity.
    Ishimoto K; Kawamata N; Uchihara Y; Okubo M; Fujimoto R; Gotoh E; Kakinouchi K; Mizohata E; Hino N; Okada Y; Mochizuki Y; Tanaka T; Hamakubo T; Sakai J; Kodama T; Inoue T; Tachibana K; Doi T
    PLoS One; 2016; 11(10):e0165766. PubMed ID: 27798683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET.
    Matsui T; Leung D; Miyashita H; Maksakova IA; Miyachi H; Kimura H; Tachibana M; Lorincz MC; Shinkai Y
    Nature; 2010 Apr; 464(7290):927-31. PubMed ID: 20164836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The H3K9 Methylation Writer SETDB1 and its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells.
    Cruz-Tapias P; Robin P; Pontis J; Maestro LD; Ait-Si-Ali S
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31557926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing.
    Leung DC; Dong KB; Maksakova IA; Goyal P; Appanah R; Lee S; Tachibana M; Shinkai Y; Lehnertz B; Mager DL; Rossi F; Lorincz MC
    Proc Natl Acad Sci U S A; 2011 Apr; 108(14):5718-23. PubMed ID: 21427230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that miR-152-3p is a positive regulator of SETDB1-mediated H3K9 histone methylation and serves as a toggle between histone and DNA methylation.
    Singh SK; Bahal R; Rasmussen TP
    Exp Cell Res; 2020 Oct; 395(2):112216. PubMed ID: 32768498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing.
    Kato M; Takemoto K; Shinkai Y
    Nat Commun; 2018 Apr; 9(1):1683. PubMed ID: 29703894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Setdb1 is required for germline development and silencing of H3K9me3-marked endogenous retroviruses in primordial germ cells.
    Liu S; Brind'Amour J; Karimi MM; Shirane K; Bogutz A; Lefebvre L; Sasaki H; Shinkai Y; Lorincz MC
    Genes Dev; 2014 Sep; 28(18):2041-55. PubMed ID: 25228647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SETDB1: A perspective into immune cell function and cancer immunotherapy.
    Johnson E; Salari K; Yang S
    Immunology; 2023 May; 169(1):3-12. PubMed ID: 36524435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fibronectin type-III (FNIII) domain of ATF7IP contributes to efficient transcriptional silencing mediated by the SETDB1 complex.
    Tsusaka T; Fukuda K; Shimura C; Kato M; Shinkai Y
    Epigenetics Chromatin; 2020 Nov; 13(1):52. PubMed ID: 33256805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SETDB1: Progress and prospects in cancer treatment potential and inhibitor research.
    Ma T; Xu F; Hou Y; Shu Y; Zhao Z; Zhang Y; Bai L; Feng L; Zhong L
    Bioorg Chem; 2024 Apr; 145():107219. PubMed ID: 38377821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of DNA methylation turnover at LTR retrotransposons and imprinted loci by the histone methyltransferase Setdb1.
    Leung D; Du T; Wagner U; Xie W; Lee AY; Goyal P; Li Y; Szulwach KE; Jin P; Lorincz MC; Ren B
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6690-5. PubMed ID: 24757056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinated regulation of microRNA genes in C19MC by SETDB1.
    Jeon K; Eom J; Min B; Park JS; Kang YK
    Biochem Biophys Res Commun; 2022 Dec; 637():17-22. PubMed ID: 36375246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of Endogenous Retroviruses in Dnmt1(-/-) ESCs Involves Disruption of SETDB1-Mediated Repression by NP95 Binding to Hemimethylated DNA.
    Sharif J; Endo TA; Nakayama M; Karimi MM; Shimada M; Katsuyama K; Goyal P; Brind'Amour J; Sun MA; Sun Z; Ishikura T; Mizutani-Koseki Y; Ohara O; Shinkai Y; Nakanishi M; Xie H; Lorincz MC; Koseki H
    Cell Stem Cell; 2016 Jul; 19(1):81-94. PubMed ID: 27151458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ubiquitination-dependent and -independent repression of target genes by SETDB1 reveal a context-dependent role for its methyltransferase activity during adipogenesis.
    Zhang J; Matsumura Y; Kano Y; Yoshida A; Kawamura T; Hirakawa H; Inagaki T; Tanaka T; Kimura H; Yanagi S; Fukami K; Doi T; Osborne TF; Kodama T; Aburatani H; Sakai J
    Genes Cells; 2021 Jul; 26(7):513-529. PubMed ID: 33971063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone lysine methyltransferase SETDB1 as a novel target for central nervous system diseases.
    Markouli M; Strepkos D; Chlamydas S; Piperi C
    Prog Neurobiol; 2021 May; 200():101968. PubMed ID: 33279625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of the ubiquitination-triggered active form of SETDB1 in Escherichia coli for biochemical and structural analyses.
    Funyu T; Kanemaru Y; Onoda H; Arita K
    J Biochem; 2021 Dec; 170(5):655-662. PubMed ID: 34324684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.